
LIGHTWEIGHT PRIVACY FOR AND FROM THE MASSES

Yiping Ma

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2025

Supervisor of Dissertation Co-Supervisor of Dissertation

Sebastian Angel Tal Rabin

Raj and Neera Singh Assistant Profes-
sor, Computer and Information Science

Rachleff Family Professor, Computer
and Information Science

Graduate Group Chairperson

Mayur Naik, Misra Family Professor, Computer and Information Science

Dissertation Committee

Brett Hemenway Falk, Research Assistant Professor, Computer and Information Science
Yuval Ishai, Professor, Computer Science, Technion – Israel Institute of Technology
Sampath Kannan, Henry Salvatori Professor, Computer and Information Science
Pratyush Mishra, Assistant Professor, Computer and Information Science
Antigoni Polychroniadou, Executive Director, JP Morgan AI Research

LIGHTWEIGHT PRIVACY FOR AND FROM THE MASSES

COPYRIGHT

2025

Yiping Ma

Dedicated to my loved ones.

iii

ACKNOWLEDGEMENT

I often joke with my friends that magical relationships begin with randomness. It struck me today

that this isn’t a joke. Yet beyond the magic of how things start lies something even more powerful—

the quiet, lasting impact on me from relationships with many wonderful people. I am truly grateful

to all of you.

In 2018, I was coincidentally introduced to the field of cryptography by Xiao Wang and Ruiyu Zhu.

Xiao later introduced me to a winter school in Shenzhen and the lectures there absolutely fascinated

me. I want to thank them for their friendliness and the opportunity they opened up for me, which

ultimately led me to pursue a PhD.

My two advisors made my PhD journey truly the best it could be. When I was a junior student

who knew little about research and academic writing, they gave me tons of feedback on my papers

and talks, taught me skills in all aspects with great patience, and were incredibly forgiving when I

made mistakes. More important than all of that, they were there to support me during the most

difficult time of my PhD. Each of you has guided me in your own way and shaped who I am.

Sebastian, you pushed me to be a clearer and braver thinker. You always made sure that I was

asking myself the right questions at each junction I faced, from choosing research problems to

making career decisions. I admire your dedication to the quality of research and your perseverance

to work towards challenging goals, and I hope to emulate them in the future.

Tal, I owe you more than I can say. You are an oracle that hands me the most helpful answers

when I come to you with my hardest questions. I’ve learned so much from working with you, from

how you think about a problem to how you envision the bigger picture of research; and beyond

that, you are a friend, a life mentor, and a true role model whom I hope I can live up to one day.

Most importantly, the fact that you have confidence in me has made me believe that it is possible

to achieve my goals that I once thought were too far away.

Collaboration is one of the best parts in my PhD. I was extremely lucky to start collaboration

iv

with Yuval Ishai in my second year. Yuval has a gift for discovering unexpected connections across

different ideas, and working with him changed the way I think about research. I truly appreciated

how incredibly fast and thorough his feedback always was. Beyond that, I continue to admire his

great sense of humor, humility, and optimism.

My two visits to Technion turned out to be wonderful coincidences—they brought me together

with people who later became collaborators and friends. I want to thank all of you for making the

visits fruitful and colorful: Amit Agarwal, Elette Boyle, Niv Gilboa, Matan Hamilis, Xin Huang,

Mahimna Kelkar, Victor Kolobov, Daniel Lee, Varun Narayanan, and Yaxin Tu. The second part of

this thesis stems from the work I did during the first visit with Mahimna, the time in Haifa together

with you is one of the best memories during my PhD. With the privacy team at Google, we made

a great follow-up work to the second part of this thesis. I want to thank Adrià Gascón, Baiyu Li,

and Mariana Raykova for their efforts in making this possible.

I had two wonderful summers with the cryptography group at JP Morgan AI Research and the fellow

interns: Alex Bienstock, Daniel Escudero, Yue Guo, Harish Karthikeyan, Lisa Masserova, Nikolas

Melissaris, Antigoni Polychroniadou, Akira Takahashi, and Chenkai Weng. The first part of this

thesis comes out of a collaboration with Antigoni. She has always been encouraging, forgiving, and

a strong advocate for me, for which I am genuinely grateful. I was also fortunate to work with

people in AWS cryptography group: Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk; they are

welcoming, kind, and so much fun to work with.

Conference and talk travels have been an exciting part of PhD life. I want to thank Jessica Chen,

Alexandra Henzinger, Darya Kaviani, Ryan Lehmkuhl, Lisa Masserova, Peihan Miao, Mayank

Rethee, Wenhao Zhang and Jinhao Zhu for hosting me for talks. I thank Yingchen Wang for

sharing rooms with me at many conferences—somehow, we always ended up attending the same

ones!

Being with fellow students at Penn has given me a true sense of belonging. DSL, Levine 613, and

AGH 342 would not be such fun places without you: Lef Ioannidis, Eli Margolin, Matan Shtepel,

v

Tushar Mopuri, Alireza Shirzad, Jess Woods, Haoran Zhang, Yuxuan Zhang, Ke Zhong. Jess and

Ke, you have always been kind and reliable research buddies. Eli, Lef, and Haoran—you light up

the office space with your great sense of humor and insightful conversations. Yuxuan, you are such

a quiet and sweet person to share an office with. Tushar and Ali created a collaborative, interactive

vibe in the lab; and I especially thank Ali for continuing to run the security seminar when I was tied

up with other responsibilities. Matan, your vibrant energy and enthusiasm for research are truly

contagious.

The faculty I met at Penn have been extremely supportive, and the friendly environment in the

CIS department has made me feel at home. I am especially thankful to Brett Hemenway, Sampath

Kannan, Pratyush Mishra for serving as my committee members.

I also want to thank the staff at Penn: Britton Carnevali, Cheryl Hickey, Ally Moraschi, and Mari

Thach. Room bookings, catering for seminars, office moving and on and on; they took care of it all

with such professionalism.

PhD life would have been so much harder without friends in Philly and my hometown. I want to

thank everyone of you for supporting me: Yifan Cai, Danfeng Cao, Peng Cao, Xinyi Chen, Danning

He, Anran Huang, Van Truong, Wenshi Wang, Yifan Wu, and Ke Zhong. Xinyi and Anran have

been sharing apartment with me for three years. Xinyi is a creative source of ideas for cooking,

traveling, and even giving talks. I am grateful for all the fun days and conversations we shared.

Anran generously provided me support when I first moved to Philly. I am also thankful for her

continuous encouragement over the past years in pursuing my career goals.

Finally, I want to thank my family for their support. I appreciate the freedom my parents have

given me to pursue anything I want, and I am grateful for my grandma who played a significant role

in shaping the person I am today, instilling in me the values of kindness, commitment, and hard

work.

vi

ABSTRACT

LIGHTWEIGHT PRIVACY FOR AND FROM THE MASSES

Yiping Ma

Sebastian Angel

Tal Rabin

Online services today rely on a massive amount of user data. Yet, the data that users supply to or

fetch from the services expose their personal information, which often in practice leads to privacy

failures. In this dissertation, we design protocols and build systems that allow users to supply or fetch

data without putting their privacy at risk. While this is achievable in theory with general-purpose

cryptography tools, applying them at the scale of today’s applications—often serving millions of

users—is prohibitively expensive. Our insight is that the large user base can be leveraged to get

lightweight privacy, although it is often seen as a performance bottleneck.

We consider two types of problems under the model of a central “powerful” server and many “weak”

clients:

• How does the server aggregate (or more advanced, train machine learning models on) private

data of clients without learning any individual client’s data? Here, the clients “push” private

data to the server.

• How do the clients fetch data from a public database at the server while completely hiding

from the server which data they want to fetch? Here, the clients privately “pull” data from

the server.

For the first problem, we designed and built two systems: 1) Flamingo, a secure aggregation system

for high-dimensional vector inputs that can be used to train neural networks on private data across

hundreds of thousands of clients; 2) Armadillo, a system that shares Flamingo’s properties but addi-

tionally offers disruption resistance against adversarial clients. The key design principles underlying

vii

both systems are distributing the trust among the large number of clients and leveraging them to

assist with secure computation. The main challenge we addressed was making clients lightweight

enough to run on weak devices.

The second problem is closely related to a classical cryptography problem called Private Information

Retrieval (PIR). We consider PIR under “the shuffle model”, where queries can be made anonymously

by many clients. Under this model, we give the first single-server PIR with information-theoretic

security and sublinear communication per query.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . vii

LIST OF ILLUSTRATIONS . xii

CHAPTER 1 : INTRODUCTION . 1

1.1 Overview of results . 4

1.1.1 Secure aggregation in federated learning . 4

1.1.2 PIR in the shuffle model . 5

1.2 Roadmap . 7

CHAPTER 2 : “PRIVATE PUSH”: SECURE AGGREGATION 8

2.1 Introduction . 8

2.2 Flamingo: Efficient multi-run secure aggregation with one-time setup 8

2.2.1 Motivation . 8

2.2.2 Summary of contributions . 10

2.2.3 Setting, threat model and goals . 11

2.2.4 Cryptographic building blocks . 15

2.2.5 Limitations of prior work . 16

2.2.6 High-level ideas . 19

2.2.7 Full protocol description . 24

2.2.8 Security analysis and parameter selection . 30

2.2.9 Implementation details . 33

2.2.10 Experimental evaluation . 35

2.2.11 Related work . 43

2.3 Armadillo: Secure aggregation with disruption resistance 45

2.3.1 Background and summary of contributions . 45

ix

2.3.2 Setting, threat model, and goals . 46

2.3.3 Cryptographic building blocks . 47

2.3.4 Protocol design . 51

2.3.5 Security analysis and parameter selection . 61

2.3.6 Implementation and optimization . 62

2.3.7 Evaluation . 64

2.3.8 Related work . 69

2.4 Comparison, discussion and limitations . 70

CHAPTER 3 : “PRIVATE PULL”: PIR IN THE SHUFFLE MODEL 73

3.1 Introduction . 73

3.1.1 Summary of contributions . 75

3.1.2 Discussion on the shuffle model . 76

3.2 Preliminaries . 77

3.2.1 Multi-server PIR schemes . 77

3.2.2 Balls and bins . 84

3.2.3 The “split and mix” technique . 85

3.3 Definitions: PIR in the shuffle model . 86

3.4 Technical overview . 89

3.5 A generic construction paradigm . 93

3.5.1 The main theorem . 93

3.5.2 Proof overview . 96

3.5.3 Optimization . 101

3.5.4 Concrete instantiations . 103

3.6 PIR with variable-sized records . 106

3.6.1 Motivation . 106

3.6.2 Problem statement . 107

3.6.3 Construction: Recursive splitting . 110

3.7 Related work and discussion . 111

x

APPENDIX A : DEFERRED MATERIALS FOR FLAMINGO PROTOCOL 115

APPENDIX B : DEFERRED MATERIALS FOR ARMADILLO PROTOCOL 134

APPENDIX C : DEFERRED PROOF OF PIR CHAPTER 145

BIBLIOGRAPHY . 166

xi

LIST OF ILLUSTRATIONS

FIGURE 2.1 Pseudocode for generating graph Gt in round t. 23
FIGURE 2.2 Workflow of Flamingo. The server first does a setup for all clients in the

system. In each round t of training, the server securely aggregates the masked
input vectors in the report step; in the cross-check and reconstruction steps,
the server communicates with a small set of randomly chosen clients who serve
as decryptors. The decryptors are chosen independently from the set St that
provides inputs in a given round. Every R rounds, the decryptors switch and
the old decryptors transfers shares of SK to new decryptors. 24

FIGURE 2.3 Ideal functionality for the setup phase. 31
FIGURE 2.4 Ideal functionality for Flamingo protocol. 32
FIGURE 2.5 Communication complexity and number of steps (client-server round trips) of

Flamingo and BBGLR for T iterations of aggregation. N is the total number
of clients and nt is the number of clients chosen to participate in iteration t.
The number of decryptors is L, and the dropout rate of clients in St is δ. Let
A be the upper bound on the number of neighbors of a client, and let d be the
dimension of client’s input vector. 33

FIGURE 2.6 Communication costs for different steps in a single summation over 1K clients
for Flamingo and BBGLR. 37

FIGURE 2.7 Single-threaded microbenchmarks averaged over 10 runs for server and client
computation for a single summation over 1K clients. “<” means less than. . . 38

FIGURE 2.8 End-to-end completion time and accuracy of 10 secure aggregation rounds with
1K clients. The elapsed time is the finishing time of round t. For Flamingo,
round 1 includes all of the costs of its one-time setup, and between round 5
and 6 Flamingo performs a secret key transfer. 39

FIGURE 2.9 Generating shares of the secret key among 60 decryptors. The four steps are described
in Section 2.3.4 and given as part (1) in ΠDKG in Appendix A.2.2. 40

FIGURE 2.10 Evaluation for full training sessions on EMNIST and CIFAR100 datasets. The
number of clients per round is 128, the batch and epoch sizes for FedAvg
are 10 and 20, respectively. Flamingo’s setup cost is included during the first
round, and it performs a secret key transfer every 20 rounds, which adds to the
total run time. The accuracy score is TensorFlow’s sparse categorical accuracy
score [AAB+15]. 41

FIGURE 2.11 Ideal functionality for one aggregation. We follow the definition in prior
works [BIK+17, BBG+20] assuming an oracle gives a dropout set to F and
adversary A can also query the oracle. 48

FIGURE 2.12 Computation cost per client in Armadillo and ACORN-robust [BGL+22] vary-
ing input vector lengths. 66

FIGURE 2.13 Server computation in Armadillo for different number of clients (indicated via
x-axis) and different lengths of inputs (indicated on the top of bars). 68

FIGURE 2.14 Number of rounds in Armadillo and ACORN-robust, varying malicious rate η. 69

xii

FIGURE 2.15 Asymptotic communication and computation cost for one training iteration,
where vector length is ℓ and number of clients per iteration is n; for simplicity,
we omit the asymptotic notation O(·) in the table. In practice we have n < ℓ
(§2.2.3). The round complexity excludes any setup that is one-time. We choose
the baseline protocols that have similar properties as ours or use a similar model
as ours. For the protocols using the idea of sub-sampling clients, we denote
the number of sampled clients as C which is sublinear in n. In Flamingo, the
decryptor has an asymptotic cost slightly larger than n when dropouts happen. 71

FIGURE A.1 Setup phase with total number of clients N . Frand is modeled as a random
beacon service. 116

FIGURE A.2 Protocol ΠDKG (Part I). 121
FIGURE A.3 Protocol ΠDKG (Part II). 122
FIGURE A.4 Collection protocol Πsum (Part I). 123
FIGURE A.5 Collection protocol Πsum (Part II). 124
FIGURE A.6 Parameters ϵ to ensure random graph connectivity. 126
FIGURE A.7 Ideal functionality for round t in collection phase. 127

FIGURE B.1 Armadillo protocol description for computing a single sum privately (Part I). . 135
FIGURE B.2 Armadillo protocol description for computing a single sum privately (Part II). 136

xiii

CHAPTER 1

INTRODUCTION

Modern applications serve millions of users, collecting and processing vast amounts of personal data

to power services such as web search, social media, fraud detection, and more. Ensuring the privacy

of such data is a fundamental challenge, especially at this scale.

The traditional approach to designing privacy-protecting systems relies heavily on general-purpose

cryptographic tools developed by the cryptography community. Over the past decade, significant

effort has gone into optimizing these generic tools—such as secure multi-party computation (MPC)

and private information retrieval (PIR) that are concerned in this work—in increasingly powerful

ways. These tools often come with strong formal guarantees and have demonstrated remarkable

performance at small scale.

However, when applying them in the real world, we encounter a fundamental mismatch between the

scale of today’s applications and what these tools were originally expected to handle—even the most

optimized versions become impractical at such scale. For instance, MPC was mostly developed and

benchmarked under the implicit expectation of running on up to tens of parties. Even quadratic

communication would become infeasible for a few thousand parties. Similarly, while PIR has been

optimized to the point where a query to large databases can be answered at reasonable cost, real-

world systems often receive thousands to millions of requests per second. All in all, the large user

base appears to be the barrier for deploying privacy solutions at scale.

In this dissertation, we explore a different approach: can we leverage the availability of many users to

design privacy-protecting systems? We answer this question with lightweight and scalable solutions

that meet practical demands; a salient example demonstrated in this dissertation is the feasibility

of training neural networks on private image data owned by tens of thousands of clients.

This dissertation is in two parts. Both parts share the same setting: a central server and many

clients. The server abstracts the untrusted platforms that provide online services, and the clients

1

abstract users’ mobile devices, such as laptops or cell phones. The server and the clients interact

to securely perform two types of tasks: in the first, the clients privately “push” their data to the

server; and in the second part, the clients privately “pull” data from the server. We describe these

tasks in more detail next.

Part I: Private “push”. Online service providers often explicitly ask users for their data, and

in exchange, they use the data to improve user experience. In such scenarios, users may still wish

to share their data in order to enjoy better services, but seek to do so in a manner that minimizes

privacy risks.

In Part I, we focus on a problem called secure aggregation: how can a server compute the sum of

inputs from a set of clients without learning any individual input? While summation may appear

too simple for complex applications, it suffices for computing a wide range of statistics [CGB17,

HIKR23], including max/min, variance, histograms, and as this work shows, even for training

machine learning models.

The secure aggregation problem has received considerable study in recent years, but the setting we

consider in this work—federated learning—introduces new and significant challenges. In this setting,

a server needs to consecutively run aggregations many times with a large set of computationally

weak, unstable, and potentially faulty clients. This dissertation builds systems that provide fault

tolerance while remaining efficient enough to support many rounds of secure aggregation on many

clients. The observation we made is that most users in federated learning scenarios are honest

and mutually unassociated, and at any given time a majority of them are available. We exploit

this observation by splitting trust among the clients and leveraging whoever is present to assist

with secure computation. However crucially, this must be done in a lightweight way respecting the

limited capabilities of client devices, and a robust way respecting to the fact that they are unstable

and error-prone.

At a high level, our systems work as follows: First, each client sends their input in some masked

form to the server; then, a small committee—sampled randomly from the client population—is

2

responsible for unmasking the aggregation result. In short, regular clients contribute their inputs

and then exit; the committee takes on slightly more computation and communication to complete

the aggregation, in which their cost is only proportional to the committee size (much smaller than

the size of the whole population). As long as a majority of the committee clients stay online at the

time of unmasking, the aggregation can be completed.

Part II: Private “pull”. In this part, we focus on a cryptographic primitive called private infor-

mation retrieval (PIR). In PIR, a server holds a database of n bits and a client can issue a query to

retrieve the i-th bit from the database while hiding i from the server. This simple primitive recently

becomes useful in security and systems communities: researchers have built many privacy-preserving

systems using PIR in a blackbox way, such as metadata-hiding communication [AS16, AYA+21],

encrypted search systems [DFL+20], private search engines [HDCGZ23], and more. The efficiency

of these systems relies on the efficiency of the underlying PIR schemes, and recent years have seen

significant research efforts toward developing faster PIR protocols.

This dissertation considers PIR problem under the shuffle model: we assume there are many clients

making anonymous queries to the database simultaneously. Essentially, in addition to the database

server, we assume there is a shuffler who permutes the queries before they reach the database and

permutes back the responses for the clients. With shuffling, privacy for clients can be achieved in

a fundamentally different way from the classical PIR schemes [IKOS06]. This leads to a property

in our PIR construction that, as the number of simultaneous queries grows, the server’s per-query

cost actually decreases—an advantage not present in the classical PIR model.

We demonstrate the power of the shuffle model by achieving two security and efficiency balances

for PIR that are provably impossible in the classical model:

• There exists PIR with sublinear communication and information-theoretic security under the

shuffle model.

• In the shuffle model, we do not need any padding for PIR database records, as opposed to the

classical model where every record is padded to the maximum record length.

3

Our follow-up work [GIK+24] further validates this direction with a construction in which the server

can answer hundreds of queries per second to a database of several gigabytes.

1.1 Overview of results

This section provides a brief background and an overview of our main results.

1.1.1 Secure aggregation in federated learning

The earlier introduction summarized the shared design principles of the two systems in this disser-

tation: Flamingo and Armadillo. In this part, we focus on the similarities and differences in their

guarantees and the resulting performance trade-offs.

We aim for the following security and efficiency properties when we design secure aggregation

systems for the federated learning setting.

Privacy. We aim for privacy against the server, in the sense that it learns only the sum of client’s

inputs but nothing else. This implies that the server learns nothing about each individual client’s

input. We say a protocol provides privacy against an honest-but-curious server if the above property

holds when the server follows the protocol but attempts to infer additional information from the

messages it sees. The protocol achieves privacy against a malicious server if the same guarantee

holds even when the server behaves arbitrarily.

Fault tolerance. We consider two types of faults: passive and active. Passive faults refer to clients

that follow the protocol but may drop out of the execution at any time (e.g., due to power loss or

network disconnection). Active faults involve arbitrary misbehavior, such as submitting malformed

inputs, omitting messages, or sending messages that deviate from the protocol. We say a protocol

that tolerates (passive or active) faults if the server always outputs a correct sum result, regardless

of which coalition of clients are faulty, as long as the number of faulty clients remains below a certain

threshold.

Multi-iteration support. Federated learning requires a server to interact with clients hundreds of

iterations to train a model; each iteration involves one execution of secure aggregation on hundreds

4

to thousands of clients [KMA+21]. Prior to our work, even the best secure aggregation proto-

cols [BBG+20], though tailored to meet constraints of the weak clients, remained infeasible for a

complete training process. The key limitation is that these protocols were designed to handle only

a single execution of aggregation; specifically, they follow a pattern of having each client set up

input-independent secrets with several other clients, and then computing a single sum using the

secrets. These secrets cannot be reused for privacy reasons. Consequently, for each aggregation in

the training process, all clients need to perform an expensive fresh setup. As a result, using these

protocols for a complete training is infeasible. We aim for protocols with the ability to perform

setup just once, after which the clients and the server can run many aggregations continuously.

Lightweight client. Suppose each client has an input of size ℓ, and there are n clients participating

in an aggregation for a sum. Our goal is to keep the client-side computation within O(n+ ℓ). This

rules out the trivial MPC solution—having each client secret-share its input with all others—which

incurs O(nℓ) computation per client. As a reference point, n is typically on the order of a few

hundred to a few thousand for each aggregation, and ℓ can be as large as 500K [KMA+21].

Both of our systems have multi-iteration support and lightweight client computation; for each

aggregation most of the clients do O(polylog(n) + ℓ) work and a small number of clients take

O(n) work. The distinction lies in fault tolerance: Flamingo tolerates passive dropouts, whereas

Armadillo resists active faults. Specifically, Armadillo supports validation of L2 and L∞ norms of

client inputs, and guarantees output delivery. As a trade-off, it incurs higher computational overhead

on the clients and the server compared to Flamingo. In terms of privacy, Flamingo provides privacy

against a malicious server with abort while Armadillo protects against an honest-but-curious one.

1.1.2 PIR in the shuffle model

PIR allows a client to get a bit from a database x = {0, 1}n while hiding from the database which

bit is being accessed. A trivial solution for PIR is to let the client download all the n bits regardless

which bit they want to get. This has perfect security but requires communication linear in the

database size. Unfortunately, perfect security with sublinear communication is provably impossible

with only one database server [CGKS95]. Consequently, meaningful information-theoretic PIR

5

constructions all work under the multi-server model, where databases are replicated among multiple

non-colluding servers; the client communicates with each server sublinear number of bits to get the

desired bit.

The multi-server model, when deployed in practice, has several drawbacks. These include storage

overhead for database replicas, the need to keep databases synchronized across servers, and the

difficulty to justify the non-collusion assumption in practice: often, the PIR service provider owns

and operates the database and its replicas, and hence they can see the queries made to all the

servers.

Many recent single-server PIR protocols have been proposed [MW22, ACLS18], but they still fall

short of the performance achieved by multi-server PIR. While a few schemes come close to the effi-

ciency of multi-server PIR, they incur substantial client-side storage overhead [HHCG+23, ZPSZ23].

PIR in the shuffle model introduces a new design space. We assume that queries are permuted by

a primitive that implements a two-way anonymous communication channel between the database

and the clients. Then we compile a multi-server PIR protocol into PIR with a single database in the

shuffle model: each client randomizes its query index into a small number of sub-queries by locally

running a multi-server PIR query algorithm. Then, all sub-queries are anonymously sent to the

server, who responds to each sub-query separately without knowing which client it originates from.

Privacy against the database is achieved by shuffling the sub-queries, and in this work particularly,

we show that this privacy guarantee can be information-theoretic.

This shuffle model conceptually is almost equivalent to the two-server trust model (i.e., we have a

database server and a shuffle server and they do not collude), but with a key distinction: the shuffle

server does not hold a copy of the database, thereby eliminating the need for database replication

that is required in the classical two-server setting. Now, a salient benefit in deployment is that the

shuffle server can be operated by an entity independent of the database owner; and can even be

operated in a decentralized manner by many volunteers worldwide like Tor.

Below we summarize our main results. The first result is a class of PIR protocols that have sublinear

6

communication and information-theoretic security in the shuffle model, given in an informal theorem

below. Our construction does not require any state information on the client side. Following one-

time preprocessing at the server, we also get sublinear server computation per query.

Theorem 1.1.1 (Informal). For every constant 0 < γ < 1 , there is a single-server PIR protocol in

the shuffle model that, on database of size n, has O(nγ) per-query computation and communication

with 1/poly(n) statistical security, when poly(n) clients simultaneously access the database.

Our second result is about an orthogonal use case of shuffle model, this enables PIR with variable-

sized records. Real world databases typically contain records in a variety of sizes and it is often

important to hide not just the record but also its size. Unfortunately, in the classical PIR setting,

nothing better can be done apart from padding each record so that they are all now of the same

length; this poses an undue communication cost on the majority of clients who may only wish

to retrieve small records. By considering PIR in the shuffle model, we show how the size of any

individual retrieved record can be hidden without any padding even where there are only a small

number of querying clients. In particular, we show a novel recursive approach for splitting a record

of size ℓ to be retrieved which incurs only Θ(polylog(ℓ)) overhead over the insecure solution.

1.2 Roadmap

Chapter 2 focuses on secure aggregation in federated learning. It provides background for federated

learning and presents two aggregation systems Flamingo (§2.2) and Armadillo (§2.3). For each

system, we present protocol design, security properties, implementation and evaluation. We also

discuss limitations of both systems. Chapter 3 turns to PIR in the shuffle model. We give a

formal definition of PIR problem under this model (§3.3), and present a generic compiler (§3.5) that

transforms classical multi-database PIR protocols to single-database PIR in the shuffle model, and

provide concrete instantiations (§3.5.4) that achieve the complexity stated in Theorem 3.1.1. Then,

we present a construction for handling variable-sized records in PIR (§3.6). Finally, we discuss open

problems and related work (§3.7).

7

CHAPTER 2

“PRIVATE PUSH”: SECURE AGGREGATION

2.1 Introduction

Applications today rely on usage data from a massive number of clients. A single fraud de-

tection platform monitors spending of millions of customers worldwide to build their detection

model [Cao24, FIC24]. A single social app collects from billions of users their demographic infor-

mation, activity data, and more for customized advertising [Fed24]. We abstract these examples

as a single server aggregating data from many clients, where the aggregation can be as simple as

computing a mean statistic, or as complex as training a machine learning model.

In this context we ask two questions: Can each client keep their own data hidden even if a single

untrusted server coordinates the entire aggregation? Can the server always get a valid aggrega-

tion result even when arbitrary faults happen at any client? We further put these questions in a

challenging setting motivated by recent emergence of federated learning: a central powerful server

(e.g., a computing cluster) interacts with many weak clients (e.g., millions of mobile devices); here

“powerful vs. weak” is with respect to computational power, communication capacity, and device

availability. In this work, we answer these questions affirmatively with two secure aggregation sys-

tems, Flamingo and Armadillo. Flamingo deals with passive faults and Armadillo deals with active

disruptions. Furthermore, we demonstrate that Flamingo, when combined with federated learning

mechanism, can train a model of 500K parameters on private data across tens of thousands of

clients, without the server learning any individual client’s training data.

2.2 Flamingo: Efficient multi-run secure aggregation with one-time setup

2.2.1 Motivation

In federated learning, the server and the clients interact iteratively to train a model. The server

in each training iteration randomly selects a subset of clients from the whole training population,

and sends them the current model’s weights (the model starts with random weights). Each selected

8

client updates the model’s weights by running a prescribed training algorithm on its data locally,

and then sends the updated weights to the server. The server updates the model by averaging the

collected weights. The training takes multiple such iterations until the model converges.

This distributed training pattern is introduced with the goal of providing a critical privacy guarantee

in training—the raw data never leaves the clients’ devices. However, prior works [MSCS19, ZLH19]

show that a client’s individual model still leak information about its raw data, which highlights the

need for a mechanism that can securely aggregate the weights from clients [MMR+17, YM20]. This

is precisely an instance of secure aggregation.

Many protocols and systems for secure aggregation have been proposed, e.g., in the scenarios of

private error reporting and statistics collection [SCR+11, CSS11, CGB17, ACD+21, BBCG+21,

ZMA22]. However, secure aggregation in federated learning, due to its specific model, faces un-

precedented challenges: large-sized inputs (e.g., model weights), multiple rounds of aggregation

prior to model convergence, a large number of participants who are unstable (i.e., some devices

might go offline prior to completing the protocol) and some of them may even be disruptive (e.g., a

malicious device sends bogus messages to disrupt the aggregation result). It is therefore difficult to

directly apply these protocols in a black-box way and still get good guarantees and performance.

Recent works [BIK+17, BBG+20, SHY+22] propose secure aggregation tailored to federated learning

scenarios. In particular, a state-of-the-art protocol [BBG+20] (which we call BBGLR) can handle

one aggregation with thousands of clients and high-dimensional input vectors, while tolerating

devices dropping out at any point during their execution. The drawback of these protocols is that

they only examine aggregation in one training iteration in the full training process, i.e., a selection

of a subset of the clients and a sum over their inputs.

Utilizing the BBGLR protocol (or its variants) multiple times to do summations in the full training

of a model incurs high costs. Specifically, these protocols follow the pattern of having each client

establish input-independent secrets with several other clients in a setup phase, and then computing a

single sum in a collection phase using the secrets. These secrets cannot be reused for privacy reasons.

9

Consequently, for each execution of aggregation in the training process, one needs to perform an

expensive fresh setup. Furthermore, in each round (client-server round trip) of the setup and the

collection phases, the server has to interact with all of the clients. In the setting of federated

learning, such interactions are especially costly as clients may be geographically distributed and

may have limited compute and battery power or varying network conditions.

2.2.2 Summary of contributions

In this paper we propose Flamingo, the first single-server secure aggregation system that works well

for multiple executions of aggregation and that can support full sessions of training in the stringent

setting of federated learning. At a high level, Flamingo introduces a one-time setup and a collection

procedure for computing multiple sums, such that the secrets established in the setup can be reused

throughout the collection procedure. For each summation in the collection procedure, clients mask

their input values (e.g., updated weight vectors in federated learning) with a random mask derived

from those secrets, and then send the masked inputs to the server. The server sums up all the

masked inputs and obtains the final aggregate value (what the server wants) masked with the sum

of all masks. Flamingo then uses a lightweight protocol whereby a small number of randomly chosen

clients (which we call decryptors) interact with the server to remove the masks.

The design of Flamingo significantly reduces the overall training time of a federated learning model

compared to running BBGLR multiple times. First, Flamingo eliminates the need for a setup phase

for each summation, which reduces the number of rounds in the full training session. Second, for

each summation, Flamingo only has one round that requires the server to contact all of the clients

(asking for their inputs); the rest of the interactions are performed between the server and a few

clients who serve as decryptors.

Besides training efficiency, the fact that a client needs to only speak once in an aggregation reduces

the model’s bias towards results that contain only data from powerful, stably connected devices. In

Flamingo, the server contacts the clients once to collect inputs; in contrast, prior works have multiple

client-server communication rounds in the setup phase (before input collection) and thus filter out

weak devices for summation, as staying available longer is challenging. Seen from a different angle,

10

if we fix the number of clients, the failure probability of a client in a given round, and the network

conditions, Flamingo’s results are of higher quality, as they are computed over more inputs than

prior works.

In summary, Flamingo’s technical innovations are:

• Lightweight dropout resilience. A new mechanism to achieve dropout resilience in which the

server only contacts a small number of clients to remove the masks. All other clients are free

to leave after the one round in which they submit their inputs without harming the results.

• Reusable secrets. A new way to generate masks that allows the reuse of secrets across multiple

times of aggregation.

• Per-iteration graphs. A new graph generation procedure that allows clients in Flamingo to

unilaterally determine (without the help of the server as in prior work) which pairwise masks

they should use in any given iteration.

These advancements translate into significant performance improvements (§2.2.10). For a 10-

iteration pure summation task, Flamingo is 3× faster than BBGLR (this includes Flamingo’s one-

time setup cost), and includes the contribution of more clients in its result; this performance is

measured under the assumption that BBGLR can set up a trusted key directory (e.g., PKI) for

free for each aggregation. Therefore, our improvement in practice over BBGLR should be far more

pronounced. When training a neural network on the Extended MNIST dataset, Flamingo takes

about 40 minutes to converge while BBGLR needs roughly 3.5 hours to reach the same training

accuracy.

2.2.3 Setting, threat model and goals

Secure aggregation is useful in a variety of domains: collecting, in a privacy-preserving way, er-

ror reports [CGB17, BBCG+21], usage statistics [SCR+11, CSS11], and ad conversions [ZMA22,

ACD+21]; it has even been shown to be a key building block for computing private auctions [ZMMA23].

But one key application is secure federated learning, whereby a server wishes to train a model on

11

data that belongs to many clients, but the clients do not wish to share their data (or other inter-

mediate information such as weights that might leak their data [ZLH19]). To accomplish this, each

client receives the original model from the server and computes new private weights based on their

own data. The server and the clients then engage in a secure aggregation protocol that helps the

server obtain the sum of the clients’ private weights, without learning anything about individual

weights beyond what is implied by their sum. The server then normalizes the sum to obtain the

average weights which represent the new state of the model. The server repeats this process until

the training converges.

This process is formalized as follows. Let [z] denote the set of integers {1, 2, . . . , z}, and let x denote

a vector; all operations on vectors are component-wise. A total number of N clients are fixed before

the training starts. Each client is indexed by a number in [N]. The training process consists of T

iterations. In each iteration t ∈ [T], a set of clients is randomly sampled from the N clients, denoted

as St. Each client i ∈ St has an input vector, xi,t, for iteration t. (A client may be selected in

multiple iterations and may have different inputs for those iterations.) In each iteration, the server

wants to securely compute the sum of the |St| input vectors,
∑

i∈St
xi,t.

In practical deployments of federated learning, a complete sum is hard to guarantee, as some clients

may drop out in the middle of the aggregation process and the server must continue the protocol

without waiting for them to come back (otherwise the server might be blocked for an unacceptable

amount of time). So the real goal is to compute the sum of the input vectors from the largest

possible subset of St; we elaborate on this in the next few sections.

Target deployment scenario

Based on a recent survey of federated learning deployments [KMA+21], common parameters are

as follows. N is in the range of 100K–10M clients, where |St| = 50–5,000 clients are chosen to

participate in a given round t. The total number of rounds T for a full training session is 500–

10,000. Input weights (xi,t) have typically on the order of 1K–500K entries for the datasets we

surveyed [KNH, Kri09, CDW+18, CDW+].

12

Clients in these systems are heterogeneous devices with varying degrees of reliability (e.g., cellphones,

servers) and can stop responding due to device or network failure.

Communication model

Each client communicates with the server through a private and authenticated channel. Messages

sent from clients to other clients are forwarded via the server, and are end-to-end encrypted and

authenticated.

Failure and threat model

We model failures of two kinds: (1) honest clients that disconnect or are too slow to respond as

a result of unstable network conditions, power loss, etc; and (2) arbitrary actions by an adversary

that controls the server and a bounded fraction of the clients. We describe each of these below.

Dropouts. For each summation, the server interacts with the clients (or a subset of them) several

times (several rounds). If a server initiates a round and contacts a set of clients, but some of the

clients are unable to respond in a timely manner, the server has no choice but to keep going; the

stragglers are dropped and do not participate in the rest of the computation for this summation.

In practice, the fraction of dropouts in the contacted set depends on the client response time

distribution and a server timeout (e.g., one second); longer timeouts mean lower fraction of dropouts.

There are two types of clients in the system: regular clients that provide their input, and decryptors,

who are special clients whose job is to help the server recover the final result. We upper bound the

fraction of regular clients that drop out in any given aggregation round by δ, and upper bound the

fraction of decryptors that drop out in any given aggregation round by δD.

Adversary. We assume a static, malicious adversary that corrupts the server and up to an η fraction

of the total N clients. That is, the adversary compromises Nη clients independent of the protocol

execution and the corrupted set stays the same throughout the entire execution (i.e., all training

iterations). Note that malicious clients can obviously choose to drop out during protocol execution,

but to make our security definition and analysis clear, we consider the dropout of malicious clients

separate from, and in addition to, the dropout of honest clients.

13

Similarly to our dropout model, we distinguish between the fraction of corrupted regular clients

(ηSt) and corrupted decryptors (ηD). Both depend on η but also on how Flamingo samples regular

clients and decryptors from the set of all N clients. We defer the details to Appendix A.1, but

briefly, ηSt ≈ η; and given a (statistical) security parameter κ, ηD is upper bounded by κη with

probability 2−Θ(κ).

Threshold requirement. The minimum requirement for Flamingo to work is δD + ηD < 1/3. For a

target security parameter κ, we show in Appendix A.3 how to select other parameters for Flamingo

to satisfy the above requirement and result in minimal asymptotic costs.

Remark 1 (Comparison to prior works on threat model). BBGLR and other works [BIK+17,

BBG+20] also have a static, malicious adversary but only for a single execution of aggregation.

In fact, in Section 2.2.5 we show that their protocol cannot be naturally extended to multiple

aggregations that withstands a malicious adversary throughout.

Properties

Flamingo is a secure aggregation system that achieves the following properties under the above

threat and failure model. We give informal definitions here, and defer the formal definitions to

Section 2.2.8.

• Dropout resilience: When all parties follow the protocol, the server, in each iteration t, will

get a sum of inputs from all the online clients in St. Note that this implicitly assumes that

the protocol both completes all the iterations and outputs meaningful results.

• Security : For each iteration t summing over the inputs of clients in St, a malicious adversary

learns the sum of inputs from at least (1− δ − η)|St| clients.

Besides the above, we introduce a new notion that quantifies the quality of a single sum.

• Sum accuracy : An execution of summation has sum accuracy τ if the final sum result contains

the contribution of a τ fraction of the clients who are selected to contribute to that summation

(i.e., τ |St|).

14

Remark 2 (Input correctness). In the context of federated learning, if malicious clients input bogus

weights, then the server could derive a bad model (it may even contain “backdoors” that cause the

model to misclassify certain inputs [BVH+20]). Ensuring correctness against this type of attack

is out of the scope of this work; to our knowledge, providing strong guarantees against malicious

inputs remains an open problem. Some works [RNFH19, RZHP20, RNM+21, CGJvdM22, ABIW22,

BGL+22] use zero-knowledge proofs to bound how much a client can bias the final result, but they

are unable to formally prove the absence of all possible attacks.

Remark 3 (Comparison to prior work on privacy guarantee). Flamingo provides a stronger security

guarantee than BBGLR. In Flamingo, an adversary who controls the server and some clients learns

a sum that contains inputs from at least a 1 − δ − η fraction of clients. In contrast, the malicious

protocol in BBGLR leaks several sums: consider a partition of the |St| clients, where each partition

set has size at least α · |St|; a malicious adversary in BBGLR learns the sum of each of the partition

sets. Concretely, for 5K clients, when both δ and η are 0.2, α < 0.5. This means that the

adversary learns the sum of two subsets. This follows from Definition 4.1 and Theorem 4.9 in

BBGLR [BBG+20].

2.2.4 Cryptographic building blocks

We start by reviewing some standard cryptographic primitives used by BBGLR and Flamingo.

Pseudorandom generators. A PRG is a deterministic function that takes a random seed in {0, 1}λ

and outputs a longer string that is computationally indistinguishable from a random string (λ is

the computational security parameter). For simplicity, whenever we use PRG with a seed that is

not in {0, 1}λ, we assume that there is a deterministic function that maps the seed to {0, 1}λ and

preserves security. Such mapping is discussed in detail in Section 2.2.9.

Pseudorandom functions. A PRF : K × X → Y is a family of deterministic functions indexed by

a key in K that map an input in X to an output in Y in such a way that the indexed function is

computationally indistinguishable from a truly random function from X to Y. We assume a similar

deterministic map for inputs as described in the PRG above.

15

Shamir’s secret sharing. An ℓ-out-of-L secret sharing scheme consists of the following two algo-

rithms, Share and Recon. Share(s, ℓ, L) → (s1, . . . , sL) takes in a secret s, a threshold ℓ, and the

number of desired shares L, and outputs L shares s1, . . . , sL. Recon takes in at least ℓ + 1 of the

shares, and output the secret s; i.e., for a set U ⊆ [L] and |U | ≥ ℓ+1, Recon({su}u∈U)→ s. Security

requires that fewer than ℓ+ 1 shares reveal no information about s.

Diffie-Hellman key exchange. Let G be a group of order q in which the Decisional Diffie-Hellman

(DDH) problem is hard, and g be a generator of G. Alice and Bob can safely establish a shared

secret (assuming a passive adversary) as follows. Alice samples a secret a $←− Zq, and sets her public

value to ga ∈ G. Bob samples his secret b $←− Zq, and sets his public value to gb ∈ G. Alice and Bob

exchange the public values and raise the other party’s value to their secret, i.e., gab = (ga)b = (gb)
a.

If DDH is hard, the shared secret gab is only known to Alice and Bob but no one else.

2.2.5 Limitations of prior work

In this section, we discuss BBGLR [BBG+20], which is the state of the art protocol for a single round

secure aggregation in the federated learning setting. We borrow some ideas from this protocol, but

design Flamingo quite differently in order to support a full training session.

BBGLR is designed for computing a single sum on the inputs of a set of clients. To apply it to the

federated learning setting, we can simply assume that in a given iteration of the training process,

there are n clients selected from a large population of size N . We can then run BBGLR on these n

clients to compute a sum of their inputs.

The high level idea of BBGLR is for clients to derive pairwise random masks and to add those masks

to their input vectors in such a way that when all the masked input vectors across all clients are

added, the masks cancel out. It consists of a setup phase and a collection phase. We first describe

a semi-honest version below.

Setup phase. The setup phase consists of three steps: (1) create a database containing public keys

of all of the n clients; (2) create an undirected graph where vertices are clients, and each vertex

has enough edges to satisfy certain properties; (3) have each client send shares of two secrets to its

16

neighbors in the graph. We discuss these below.

In the first round, each client i ∈ [n] generates a secret ai and sends gai to the server, where gai

represents client i’s public key. The server then stores these public keys in a database. Note that

the malicious-secure version of BBGLR requires the server to be semi-honest for this particular step,

or the existence of a trusted public key infrastructure (PKI).

In the second round, the graph is established as follows. Each client i ∈ [n] randomly chooses γ

other clients in [n] as its neighbors, and tells the server about their choices. After the server collects

all the clients’ choices, it notifies each client of their neighbors indexes in [n] and public keys. The

neighbors of client i, denoted as A(i), are those corresponding to vertices that have an edge with i

(i.e., i chose them or they chose i).

Finally, each client i uses Shamir’s secret sharing to share ai and an additional random value mi to

its neighbors A(i) (let the threshold be ℓ < |A(i)|), where the shares are end-to-end encrypted with

a secure authenticated encryption scheme and sent via the server (§2.2.3).

Collection phase. Client i sends the following masked vector to the server:

V eci = xi +
∑

j∈A(i),i<j

PRG(ri,j)−
∑

j∈A(i),i>j

PRG(ri,j)︸ ︷︷ ︸
pairwise mask

+ PRG(mi)︸ ︷︷ ︸
individual mask

,

where ri,j = gaiaj , which can be computed by client i since it has the secret ai and j’s public key,

gaj . (These are essentially Diffie-Hellman key exchanges between a client and its neighbors.) Here

we view the output of the PRG as a vector of integers instead of a binary string. Also, we will write

the pairwise mask term as
∑

j∈A(i)±PRG(ri,j) for ease of notation.

As we mentioned earlier (§2.2.3), clients may drop out due to unstable network conditions, power

loss, etc. This means that the server may not receive some of the masked vectors within an acceptable

time period. Once the server times out, the server labels the clients whose vectors have been received

as “online”; the rest are labeled “offline”. The server shares this information with all the n clients.

The server then sums up all of the received vectors, which yields a vector that contains the masked

17

sum. To recover the correct sum, the server needs a way to remove the masks. It does so by

requesting for each offline client i, the shares of ai from i’s neighbors; and for each online client j,

the shares of mj from j’s neighbors. These shares allow the server to reconstruct either the pairwise

mask or the individual mask for each client. As long as there are more than ℓ neighbors that send

the requested shares, the server can successfully remove the masks and obtain the sum. This gives

the dropout resilience property of BBGLR.

One might wonder the reason for having the individual mask mi, since the pairwise mask already

masks the input. To see the necessity of having mi, assume that it is not added, i.e., V eci =

xi +
∑
±PRG(rij). Suppose client i’s message is sent but not received on time. Thus, the server

reconstructs i’s pairwise mask
∑
±PRG(rij). Then, i’s vector V eci arrives at the server. The server

can then subtract the pairwise mask from V eci to learn xi. The individual mask mi prevents this.

Preventing attacks in fault recovery. The above protocol only works in the semi-honest setting.

There are two major attacks that a malicious adversary can perform. First, a malicious server

can give inconsistent dropout information to honest clients and recover both the pairwise and in-

dividual masks. For example, suppose client i has neighbors j1, . . . , jγ , and a malicious server lies

to the neighbors of j1, . . . , jγ that j1, . . . , jγ have dropped out (when they actually have not). In

response, their neighbors, including i, will provide the server with the information it needs to re-

construct aj1 , . . . , ajγ , thereby deriving all the pairwise secrets ri,j1 , . . . , ri,jγ . At the same time, the

server can tell j1, . . . , jγ that i was online and request the shares of mi. This gives the server both

the pairwise mask and the individual mask of client i, violating i’s privacy. To prevent this, BBGLR

has a consistency check step performed among all neighbors of each client to reach an agreement

on which nodes actually dropped out. In this case, i would have learned that none of its neighbors

dropped out and would have refused to give the shares of their pairwise mask.

Second, malicious clients can submit a share that is different than the share that they received from

their neighbors. This could lead to reconstruction failure at the server, or to the server deriving a

completely different secret. BBGLR fixes the latter issue by having the clients hash their secrets

and send these hashes to the server when they send their input vectors; however, reconstruction

18

could still fail because of an insufficient threshold in error correction1.

In sum, the full protocol of BBGLR that withstands a malicious adversary (assuming a PKI or a

trusted server during setup) has six rounds in total: three rounds for the setup and three rounds

for computing the sum.

Using BBGLR for federated learning

BBGLR works well for one iteration of training, but when many iterations are required, several issues

arise. First, in federated learning the set of clients chosen to participate change over iterations, so a

new graph needs to be derived and new secrets must be shared. Even if the graph stays the same,

the server cannot reuse the secrets from the setup in previous aggregation as the masks are in fact

one-time pads that cannot be applied again. This means that we must run the setup phase for

each aggregation, which incurs a high latency since the setup contains three rounds involving all

the clients.

Moreover, BBGLR’s threat model does not naturally extend to multiple executions of aggregation.

It either needs a semi-honest server or a PKI during the first round of the protocol. If we assume

the former, then this means the adversary has to be semi-honest during the exact time of setup in

each training iteration, which is practically impossible to guarantee. If we use a PKI, none of the

keys can be reused (for the above reasons); as a result, all of the keys in the PKI need to be updated

for each iteration, which is costly.

2.2.6 High-level ideas

Flamingo supports continuous execution of multiple aggregations without redoing the setup for each

aggregation and withstands a malicious adversary throughout. The assumptions required are: (1)

in the setup, all parties are provided with the same random seed from a trusted source (e.g., a

distributed randomness beacon [DKIR21]); and (2) a PKI (e.g., a key transparency log [CDGM19,

MBB+15, LGG+22, TBP+19, TFZ+22, TKPS22, HHK+21]). Below we describe the high-level ideas
1To apply a standard error correction algorithm such as Berlekamp-Welch in this setting, the polynomial degree

should be at most γ/3. Definition 4.2 in BBGLR implies that the polynomial degree may be larger than required for
error correction.

19

underpinning Flamingo and then we give the full protocol (§2.2.7 and §2.2.7).

Flamingo has three key ideas:

(1) Lightweight dropout-resilience. Instead of asking clients to secret share ai and mi for their masks

with all of their neighbors, we let each client encrypt—in a special way—the PRG seeds of their

pairwise and individual masks, append the resulting ciphertexts to their masked input vectors, and

submit them to the server in a single round. Then, with the help of a special set of L clients that

we call decryptors, the server can decrypt one of the two seeds associated with each masked input

vector, but not both. In effect, this achieves a similar fault-tolerance property as BBGLR (§2.2.5),

but with a different mechanism.

The crucial building block enabling this new protocol is threshold decryption [GHKR08, DF89,

SG02], in which clients can encrypt data with a system-wide known public key PK, in such a way

that the resulting ciphertexts can only be decrypted with a secret key SK that is secret shared among

decryptors in Flamingo. Not only does this mechanism hide the full secret key from every party in

the system, but the decryptors can decrypt a ciphertext without ever having to interact with each

other. Specifically, the server in Flamingo sends the ciphertext (pealed from the submitted vector)

to each of the decryptors, obtains back some threshold ℓ out of L responses, and locally combines the

ℓ responses which produce the corresponding plaintext. Our instantiation of threshold decryption

is based on the ElGamal cryptosystem and Shamir’s secret sharing; we describe it in Section 2.2.9.

Technically one can also instantiate the threshold decryption with other cryptosystems, but we

choose ElGamal because it enables non-interactive threshold decryption, simple distributed key

generation, and efficient proof of decryption (for malicious security, §2.2.7).

One key technical challenge that we had to overcome when designing this protocol is figuring out how

to secret share the key SK among the decryptors. To our knowledge, existing efficient distributed

key generation (DKG) protocols [Ped91, CS04, GJKR06] assume a broadcast channel or reliable

point-to-point channels, whereas our communication model is that of a star topology where all

messages are proxied by a potential adversary (controlling the server) that can drop them. There

20

are also asynchronous DKG protocols [KKMS20, DYX+22, AJM+23], but standard asynchronous

communication model assumes eventual delivery of messages which is not the case in our setting.

In fact, we can relax the guarantees of DKG and Section 2.2.7 gives an extension of a discrete-log-

based DKG protocol [GJKR06] (since we target ElGamal threshold decryption) that works in the

star-topology communication model.

In sum, the above approach gives a dropout-resilient protocol for a single summation with two

rounds: first, each client sends their masked vector and the ciphertexts of the PRG seeds; second,

the server uses distributed decryption to recover the seeds (and the masks) for dropout clients

(we discuss how to ensure that decryptors agree on which of the two seeds to decrypt in §2.2.7).

This design improves the run time over BBGLR by eliminating the need to involve all the clients

to remove the masks—the server only needs to wait until it has collected enough shares from the

decryptors, instead of waiting for almost all the shares to arrive. Furthermore, the communication

overhead of appending several small ciphertexts (64 bytes each) to a large input vector (hundreds

of KBs) is minimal.

(2) Reusable secrets. Flamingo’s objective is to get rid of the setup phase for each aggregation.

Before we discuss Flamingo’s approach, consider what would happen if we were to naively run the

setup phase in BBGLR once, followed by running the collection procedure multiple times. First,

we are immediately limited to performing all of the aggregation tasks on the same set of clients,

since BBGLR establishes the graph of neighbors during the setup phase. This is problematic

since federated learning often chooses different sets of clients for each round of aggregation (§2.2.3).

Second, clients’ inputs are exposed. To see why, suppose that client i drops out in iteration 1 but not

in 2. In iteration 1, the server reconstructs ri,j for j ∈ A(i) to unmask the sum. In iteration 2, client

i sends xi +
∑

j∈A(i)±PRG(ri,j) + PRG(mi) and the server reconstructs mi by asking i’s neighbors

for their shares. Since all the ri,j are reconstructed in iteration 1 and are reused in iteration 2, the

server can derive both masks.

The above example shows that the seeds should be new and independent in each iteration of aggrega-

tion. We accomplish this with a simple solution that adds a level of indirection. Flamingo treats ri,j

21

as a long-term secret and lets the clients apply a PRF to generate a new seed for each pairwise mask.

Specifically, clients i computes the PRG seed for pairwise mask in round t as hi,j,t := PRF(ri,j , t) for

all j ∈ A(i). Note that client j will compute the same hi,j,t as it agrees with i on ri,j . In addition,

each client also generates a fresh seed mi,t for the individual mask in iteration t. Consequently,

combined with idea (1), each client uses PK to encrypt the per-round seeds, {hi,j,t}j∈A(i) and mi,t.

Then, the server recovers one of the two for each client. We later describe an optimization where

clients do not encrypt mi,t with PK (§2.2.7).

A nice property of ri,j being a long-term secret is that Flamingo can avoid performing all the Diffie-

Hellman key exchanges between graph neighbors (proxied through the server). Flamingo relies

instead on an external PKI or a verifiable public key directory such as CONIKS [MBB+15] and its

successors (which are a common building block for bootstrapping end-to-end encrypted systems).

We note that this simple technique cannot be applied to BBGLR to obtain a secure multi-round pro-

tocol. It is possible in Flamingo precisely because clients encrypt their per-round seeds for pairwise

masks directly so the server never needs to compute these seeds from the long-term pairwise secrets.

In contrast, in BBGLR, clients derive pairwise secrets (gai,aj) during the setup phase. When client

i drops out, the server collects enough shares to reconstruct ai and compute the pairwise secrets,

gai,aj , for all online neighbors j of client i. Even if we use a PRF here, the server already has the

pairwise secret; so it can run the PRF for any iteration and conduct the attacks described earlier.

(3) Per-iteration graphs. BBGLR uses a sparse graph instead of a fully-connected graph for efficiency

reasons (otherwise each client would need to secret share its seeds with every other client). In

federated learning, however, establishing sparse graphs requires per-iteration generation since the

set St changes in each iteration (some clients are chosen again, some are new [LZMC21]). A naive

way to address this is to let all clients in [N] establish a big graph G with N nodes in the setup

phase: each client in [N] sends its choice of γ neighbors to the server, and the server sends to

each client the corresponding neighbors. Then, in each iteration t, the corresponding subgraph Gt

consists of clients in St and the edges among clients in St.

22

1: Parameters: ϵ. // the probability that an edge is added
2: function ChooseSet(v, t, nt, N)
3: St ← ∅.
4: v∗t := PRF(v, t).
5: while |St| < nt do
6: Parse logN bits from PRG(v∗t) as i, add i to St.
7: Output St.
8: function GenGraph(v, t, St)
9: Gt ← nt × nt empty matrix; ρ← log(1/ϵ).

10: for i ∈ St, j ∈ St do
11: Let v′ be the first ρ bits of PRF(v, (i, j)).
12: if v′ = 0ρ then set Gt(i, j) := 1

13: Output Gt.
14: function FindNeighbors(v, St, i)
15: At(i)← ∅; ρ← log(1/ϵ).
16: for j ∈ St do
17: Let v′ be the first ρ bits of PRF(v, (i, j)).
18: if v′ = 0ρ then add j to At(i).
19: for j ∈ St do
20: Let v′ be the first ρ bits of PRF(v, (j, i)).
21: if v′ = 0ρ then add j to At(i).
22: Output At(i).

Figure 2.1: Pseudocode for generating graph Gt in round t.

However, this solution is unsatisfactory. If one uses a small γ (e.g., logN), Gt might not be connected

and might even have isolated nodes (leaking a client’s input vector since it has no pairwise masks);

if one uses a large γ (e.g., the extreme case being N), Gt will not be sparse and the communication

cost for the server will be high (e.g., O(N2)).

Flamingo introduces a new approach for establishing the graph with a communication cost inde-

pendent of γ. The graph for each iteration t is generated by a random string v ∈ {0, 1}λ known

to all participants (obtained from a randomness beacon or a trusted setup). Figure 2.1 lists the

procedure. ChooseSet(v, t, nt, N) determines the set of clients involved in iteration t, namely

St ⊆ [N] with size nt. The server computes Gt ← GenGraph(v, t, St) as the graph in iteration t

among clients in St. A client i ∈ St can find its neighbors in Gt without materializing the whole

graph using FindNeighbors(v, St, i). In this way, the neighbors of i can be locally generated. We

choose a proper ϵ such that in each iteration, the graph is connected with high probability (details

in §2.2.8).

23

… Clients reporting vector

Decryptors

Server

… … … …

Setup Report Cross-check & Reconstruction Report Cross-check & Reconstruction

Training Round 1 Training Round T

…

…

Secret Key Transfer

……

Figure 2.2: Workflow of Flamingo. The server first does a setup for all clients in the system. In
each round t of training, the server securely aggregates the masked input vectors in the report step;
in the cross-check and reconstruction steps, the server communicates with a small set of randomly
chosen clients who serve as decryptors. The decryptors are chosen independently from the set St

that provides inputs in a given round. Every R rounds, the decryptors switch and the old decryptors
transfers shares of SK to new decryptors.

The above ideas taken together eliminate the need for per-iteration setup, which improves the overall

run time of multi-iteration aggregation over BBGLR. Figure 2.2 depicts the overall protocol, and

the next sections describe each part.

2.2.7 Full protocol description

Before giving our protocol, we need to specify what types of keys the PKI needs to store. The keys

depend on the cryptographic primitives that we use (signature schemes, symmetric encryption and

ElGamal encryption); for ease of reading, we formally give these primitives in Appendix A.2.1.

The PKI stores three types of keys for all clients in [N]:

• gai of client i for its secret ai; this is for client j to derive the pairwise secret ri,j with client i

by computing (gaj)ai .

• gbi of client i for deriving a symmetric encryption key ki,j for an authenticated encryption

scheme SymAuthEnc (Definition A.2.3); this scheme is used when a client sends messages to

another client via the server. Later when we say client i sends a message to client j via the

server in the protocol, we implicitly assume the messages are encrypted using ki,j .

• pki of client i for verifying i’s signature on messages signed by ski.

Setup phase

The setup phase consists of two parts: (1) distributing a random seed v ∈ {0, 1}λ to all participants,

and (2) selecting a random subset of clients as decryptors and distribute the shares of the secret

24

key of an asymmetric encryption scheme AsymEnc. In our context, AsymEnc is the ElGamal

cryptosystem’s encryption function (Definition A.2.2).

As we mentioned earlier, the first part can be done through a trusted source of randomness, or

by leveraging a randomness beacon that is already deployed, such as Cloudflare’s [clo]. The sec-

ond part can be done by selecting a set of L clients as decryptors, D, using the random seed v

(ChooseSet), and then running a DKG protocol among them. We use a discrete-log based DKG

protocol [GJKR06] (which we call GJKR-DKG) since it is compatible with the ElGamal cryptosys-

tem. However, this DKG does not work under our communication model and requires some changes

and relaxations, as we discuss next.

DKG with an untrusted proxy. The correctness and security of the GJKR-DKG protocol relies on

a secure broadcast channel. Our communication model does not have such a channel, since the

server can tamper, replay or drop messages. Below we give the high-level ideas of how we modify

GJKR-DKG and Appendix A.2.2 gives the full protocol.

We begin with briefly describing the GJKR-DKG protocol. It has a threshold of 1/2, which means

that at most half of the participants can be dishonest; the remaining must perform the following

steps correctly: (1) Each party i generates a random value si and acts as a dealer to distribute

the shares of si (party j gets si,j). (2) Each party j verifies the received shares (we defer how

the verification is done to Appendix A.2.2). If the share from the party i fails the verification, j

broadcasts a complaint against party i. (3) Party i broadcasts, for each complaint from party j,

the si,j for verification. (4) Each party disqualifies those parties that fail the verification; the rest

of the parties form a set QUAL. Then each party sums up the shares from QUAL to derive a share

of the secret key.

Given our communication model, it appears hard to guarantee the standard DKG correctness prop-

erty, which states that if there are enough honest parties, at the end of the protocol the honest

parties hold valid shares of a unique secret key. Instead, we relax this correctness property by

allowing honest parties to instead abort if the server who is proxying the messages acts maliciously.

25

We modify GJKR-DKG in the following ways. First, we assume the threshold of dishonest partic-

ipants is 1/3. Second, all of the messages are signed; honest parties abort if they do not receive

the prescribed messages. Third, we add another step before each client decides on the eventual set

QUAL: all parties sign their QUAL set and send it to the server; the server sends the signed QUALs

to all the parties. Each party then checks whether it receives 2ℓ + 1 or more valid signed QUAL

sets that are the same. If so, then the QUAL set defines a secret key; otherwise the party aborts.

We give the detailed algorithms and the corresponding proofs in Appendix A.2.2. Note that the

relaxation from GJKR-DKG is that we allow parties to abort (so no secret key is shared at the

end), and this is reasonable particularly in the federated learning setting because the server will not

get the result if it misbehaves.

Decryptors run DKG. At the end of our DKG, a subset of the selected decryptors will hold the

shares of the secret key SK. The generated PK is signed by the decryptors and sent to all of the

N clients by the server; the signing prevents the server from distributing different public keys or

distributing a public key generated from a set of malicious clients. Each client checks if it received

2ℓ+ 1 valid signed PKs from the set of decryptors determined by the random seed (from beacon);

if not, the client aborts. In Appendix A.2, we provide the pseudocode for the entire setup protocol

Πsetup (Fig. A.1).

Collection phase

The collection phase consists of T iterations of aggregation; each iteration t has three steps: report,

cross-check, and reconstruction. Each step involves a communication round between the server and

(some of the) clients. Below we describe each step and we defer the full protocol Πsum to Figure A.4

in Appendix A.2. The cryptographic primitives we use here (SymAuthEnc and AsymEnc) are

formally given in Appendix A.2.1.

Report. In iteration t, the server uses the random value v (obtained from the setup) to select the

set of clients St ⊆ [N] of size nt by running ChooseSet(v, t, nt, N). It then establishes the graph

Gt ← GenGraph(v, t, St) as specified in Figure 2.1. We denote the neighbors of i as At(i) ⊆ St.

The server asks each client i ∈ St to send a message consisting of the following three things:

26

1. V eci = xi,t +
∑

j∈At(i)
±PRG(hi,j,t) + PRG(mi,t), where hi,j,t is computed as PRF(ri,j , t) and

ri,j is derived from the key directory by computing (gaj)ai ; mi,t is freshly generated in iteration

t by client i.

2. L symmetric ciphertexts: SymAuthEnc(ki,u,mi,u,t) for all u ∈ D, where mi,u,t is the share of

mi,t meant for u (i.e., Share(mi,t, ℓ, L) → {mi,u,t}u∈D), and ki,u is the symmetric encryption

key shared between client i and decryptor u (they can derive ki,u from the PKI);

3. |At(i)| ElGamal ciphertexts: AsymEnc(PK, hi,j,t) for all j ∈ At(i).

The above way of using symmetric encryption for individual masks and public-key encryption for

pairwise masks is for balancing computation and communication in practice. Technically, one can

also encrypt the shares of hi,j,t with symmetric authenticated encryption as well (eliminating public-

key operations), but it increases client communication—for each client, the number of ciphertexts

appended to the vector is |A(i)|·L. This is, for example, 1,600 when L and |A(i)| are both 40. On the

other hand, if one encrypts both the pairwise and individual masks using only public-key encryption,

then the number of expensive public key operations for reconstructing secrets is proportional to nt;

whereas it is only proportional to the number of dropouts in our proposed approach. In practice,

the number of dropouts is much smaller than nt, hence the savings.

Cross-check. The server needs to recover mi,t for online clients, and hi,j,t for clients that drop out.

To do so, the server labels the clients as “offline” or “online” and asks the decryptors to recover

the corresponding masks. For BBGLR, we described how this step involves most clients during the

fault recovery process and highlighted an issue where a malicious server can send inconsistent labels

to clients and recover both the pairwise mask and individual mask for some target client (§2.2.5).

Flamingo also needs to handle this type of attack (the server tells some of honest decryptors to

decrypt mi,t and other honest decryptors to decrypt hi,j,t, and utilizes the malicious decryptors

to reconstruct both), but it only needs to involve decryptors. In detail, each decryptor signs the

online/offline labels of the nt clients (each client can only be labeled either offline or online), and

sends them to the other decryptors (via the server). Each decryptor checks it received 2L/3 or more

27

valid signed labels (recall from §2.2.3 that δD + ηD < 1/3). If so, each decryptor further checks

that:

1. The number of online clients is at least (1− δ)nt;

2. All the online clients in the graph are connected;

3. Each online client i has at least k online neighbors2, such that ηk < 2−κ (η and κ are defined

as in §2.2.3).

If any of the above checks fail, the decryptor aborts. This step ensures either all the honest decryp-

tors agree on a valid offline/online label assignment and consequently the server gets the result, or

the honest decryptors abort and the server gets nothing.

Reconstruction. The server collects all the ciphertexts to be decrypted: the ciphertexts of mi,u,t

(symmetric encryption) for the online clients, and the ciphertexts of hi,j,t (public-key encryption)

for the offline clients. Then the server sends the ciphertexts to all the decryptors who perform either

a symmetric decryption or the threshold ElGamal decryption according to their agreed-upon labels.

The choice of using decryptors to check the graph and reconstruct all the secrets is based on an

important observation in federated learning: the number of clients involved in one iteration, nt,

is much smaller than the input vector length [KMA+21]. Therefore, the asymptotic costs at a

decryptor (which are proportional to nt) are actually smaller than the size of an input weight

vector.

Malicious labeling across iterations

The server, controlled by a malicious adversary, can ask for the decryption of hi,j,t in iteration t,

and then in some other iteration t′, the server can ask for the decryption of mi,t (but not mi,t′ , if

the server does not care about obtaining a result in iteration t′). This allows the server to recover

xi,t in the clear. To prevent this attack, honest decryptors need to know the iteration for which
2This can be efficiently done in an inverse way of checking how many offline neighbors that each online client has,

assuming dropout rate is small.

28

a ciphertext is sent. For symmetric ciphertext, the client appends the iteration number t to the

plaintext (e.g., mi,u,t||t) and uses authenticated encryption; for public-key ciphertexts, the client

appends t to the ciphertext c and signs the tuple (c, t) (the verification key is in the PKI). Note that

a malicious adversary can still fool enough honest decryptors into thinking it is iteration t while

it is in fact t′. To prevent this, decryptors also include the iteration number in the online/offline

labels and sign them. The cross-check (§2.2.7) guarantees that the decryptors agree on the iteration

number.

Load balancing across decryptors

In each summation, a client who is not a decryptor only sends a single vector. This is nearly opti-

mal since even if the aggregation is non-private the client has to send the vector (but without the

additional small ciphertexts). The decryptors, however, have additional computation and commu-

nication in order to help with the result reconstruction. This causes a load imbalance in the system

and could be unfair since a client selected to be a decryptor has to do more work than regular

clients.

In Flamingo, the decryptor responsibility shifts across time. Every R iterations, the current de-

cryptors transfer their shares of SK to a new set of randomly selected clients who serve as the

new decryptors. To ensure security, the shares of SK have to be modified in a particular way

during the transition, as otherwise the adversary may control some malicious decryptors before

the transition and some malicious decryptors after the transition, and thus may obtain enough

shares to reconstruct SK. We address this by relying on prior proactive secret sharing tech-

niques [HJKY95, GHKR08, KMZ+19]; they additionally enable Flamingo to change the number

of decryptors and the threshold as needed. In Appendix A.2.4, we provide details of the transition

protocol used in Flamingo.

A final clarification is that decryptors who dropped out (e.g., due to power loss) at one iteration can

come back later and participate in another iteration (e.g., when power is resumed). The decryption

always succeeds since we require that less than 1/3 deryptors are dropped out or malicious at any

round (§2.2.8). The secret key transition is purely for system load balancing—neither dropout

29

resilience nor security relies on the parameter R.

Considerations in federated learning

A recent work [PFA22] describes an attack in the composition of federated learning and secure

aggregation. The idea is that the server can elude secure aggregation by sending clients inconsistent

models. For example, the server sends to client 1 model M1, to client 2 model M2, and to client

3 model M3. Each of the clients then runs the local training on the provided model. The server

chooses the models it sends to clients 1 and 2 in a special way such that after clients 1 and 2 train

their local models, their local weights will cancel out when added. Consequently, the server will get

the model weights of client 3. The proposed defense, which works in our context without incurring

any overhead, is for clients to append the hash of the model they receive in a given iteration to

their PRG seed for that iteration: PRG(hi,j,t||Hash(M)), where M is the model received from the

server. If all the clients receive the same model, the pairwise masks cancel out; otherwise, they do

not.

2.2.8 Security analysis and parameter selection

The parameters of Flamingo include:

• System parameters N,T and the number of clients nt chosen in iteration t ∈ [T];

• Threat model parameters δD, δ, η which are given, and ηSt , ηD which depend on η (their

relation is summarized in Section 2.2.3 and fully derived in Appendix A.1).

• Security parameter κ, and the parameters that relates to security: graph generation parameter

ϵ, and the number of selected decryptors L.

We discuss these parameters in detail below and state our formal lemmas with respect to them.

Security of setup phase

Let δD upper bound the fraction of decryptors that drop out during the setup phase; note that in

Section 2.2.3 we let δD upper bound the dropouts in one aggregation and for simplicity here we use

the same notation. Flamingo’s DKG requires that δD + ηD < 1/3. Note that ηD in fact depends

30

Functionality Fsetup

Parties: clients 1, . . . , N and a server.

• Fsetup samples v
$←− {0, 1}λ.

• Fsetup samples a secret key and public key pair (SK,PK).

// When the public-key cryptosystem is instantiated by ElGamal, then SK is s
$←− Zq and PK = gs.

• Fsetup asks the adversary A whether it should continue or not. If A replies with abort, Fsetup sends abort

to all honest parties; if A replies with continue, Fsetup sends v and PK to all the parties.

Figure 2.3: Ideal functionality for the setup phase.

on η, L and N , but we will give the theorems using ηD and discuss how to choose L to guarantee

a desired ηD in Appendix A.3.

Theorem 2.2.1 (Security of setup phase). Assume that a PKI and a trusted source of randomness

exist, and that the DDH assumption holds. Let the dropout rate of decryptors in the setup phase be

bounded by δD. If δD+ηD < 1/3, then under the communication model defined in Section 2.2.3, pro-

tocol Πsetup (Fig. A.1) securely realizes functionality Fsetup (Fig. 2.3) in the presence of a malicious

adversary controlling the server and η fraction of the N clients.

Security of collection phase

First, we need to guarantee that each graph Gt, even after removing the vertices corresponding to

the δ + η fraction of dropout and malicious clients, is still connected. This imposes a requirement

on ϵ, which we state in Lemma 2.2.2. For simplicity, we omit the exact formula for the lower bound

of ϵ and defer the details to Appendix A.3.

Lemma 2.2.2 (Graph connectivity). Given a security parameter κ, and threat model parameters

δ, η (§2.2.3). Let G be a random graph G(n, ϵ). Let C,O be two random subsets of nodes in G where

|O| ≤ δn and |C| ≤ ηn (O stands for dropout set and C stands for malicious set). Let G̃ be the

graph with nodes in C and O and the associated edges removed from G. There exists ϵ∗ such that

for all ϵ ≥ ϵ∗, G̃ is connected except with probability 2−κ.

Secondly, we require 2δD+ηD < 1/3 to ensure that all online honest decryptors reach an agreement

31

Functionality Fmal

Parties: clients 1, . . . , N and a server.

Parameters: corrupted rate η, dropout rate δ, number of per-iteration participating clients n.

• Fmal receives from a malicious adversary A a set of corrupted parties, denoted as C ⊂ [N], where |C|/N ≤ η.

• For each iteration t ∈ [T]:

1. Fmal receives a sized-n random subset St ⊂ [N] and a dropout set Ot ⊂ St, where |Ot|/|St| ≤ δ, and

|C|/|St| ≤ η, and inputs xi,t from client i ∈ St\(Ot ∪ C).

2. Fmal sends St and Ot to A, and asks A for a set Mt: if A replies with Mt ⊆ St\Ot such that

|Mt|/|St| ≥ 1− δ, then Fmal computes yt =
∑

i∈Mt\C xi,t and continues; otherwise Fmal sends abort

to all the honest parties.

3. Depending on whether the server is corrupted by A:

– If the server is corrupted by A, then Fmal outputs yt to all the parties corrupted by A.

– If the server is not corrupted by A, then Fmal asks A for a shift at and outputs yt + at to the

server.

Figure 2.4: Ideal functionality for Flamingo protocol.

in the cross-check step and the reconstruction is successful. Note that the decryptors in the setup

phase who dropped out (δD fraction) will not have the share of SK; while the clients who drop out

during a complete iteration (another δD fraction) in the collection phase can come back at another

iteration, hence we have the above inequality.

Main theorems

The full protocol, denoted as ΦT , is the sequential execution of Πsetup (Fig. A.1) followed by a

T -iteration Πsum (Fig. A.4). We now give formal statements for the properties of Flamingo, and

defer the proof to Appendix A.4. Note that as we see from the ideal functionality Fmal (Fig. 2.4),

when the server is corrupted, the sum result in iteration t is not determined by the actual dropout

set Ot, but instead a set Mt chosen by the adversary (see details in Appendix A.4.5).

Theorem 2.2.3 (Dropout resilience of ΦT). Let δ, δD, η, ηD be threat model parameters as defined

(§2.2.8,§2.2.8). If 2δD + ηD < 1/3, then protocol ΦT satisfies dropout resilience: when all parties

follow the protocol ΦT , for every iteration t ∈ [T], and given a set of dropout clients Ot in the report

step where |Ot|/|St| ≤ δ, protocol ΦT terminates and outputs
∑

i∈St\O xi,t, except probability 2−κ.

32

BBGLR Flamingo

Phase Steps Server Client Steps Server Client

Setup — — — 4 O(L3) O(L2)

T sums

Iteration setup 3T O(TAnt) O(TA) — — —

Collection 3T O(Tnt(d+A)) O(T (d+A)) 3T O(Tnt(d+ L+A))
Regular client: O(T (d+A))

Decryptors: O(T (L+ δAnt + (1− δ)nt))

Figure 2.5: Communication complexity and number of steps (client-server round trips) of Flamingo
and BBGLR for T iterations of aggregation. N is the total number of clients and nt is the number
of clients chosen to participate in iteration t. The number of decryptors is L, and the dropout rate
of clients in St is δ. Let A be the upper bound on the number of neighbors of a client, and let d be
the dimension of client’s input vector.

Theorem 2.2.4 (Security of ΦT). Let the security parameter be κ. Let δ, δD, η, ηD be threat model

parameters as defined (§2.2.8,§2.2.8). Let ϵ be the graph generation parameter (Fig. 2.1). Let N be

the total number of clients and n be the number of clients for summation in each iteration. Assuming

the existence of a PKI, a trusted source of initial randomness, a PRG, a PRF, an asymmetric

encryption AsymEnc, a symmetric authenticated encryption SymAuthEnc, and a signature scheme,

if 2δD + ηD < 1/3 and ϵ ≥ ϵ∗(κ) (Lemma 2.2.2), then under the communication model defined in

Section 2.2.3, protocol ΦT securely realizes the ideal functionality Fmal given in Figure 2.4 in the

presence of a static malicious adversary controlling η fraction of N clients (and the server),3 except

with probability at most Tn · 2−κ+1.

The final complication is how to choose L to ensure 2δD + ηD < 1/3 holds; note that ηD depends

on η and L. One can choose L to be N but it does not give an efficient protocol; on the other hand,

choosing a small L may result in all the decryptors being malicious. In Appendix A.3, we give a

lower bound of L to ensure a desired ηD (w.h.p.), given N, η, and δD.

2.2.9 Implementation details

We implement Flamingo in 1.7K lines and BBGLR in 1.1K lines of Python. We choose Python to

facilitate integration with the machine learning training pipeline. For PRG, we use AES in counter

mode, for authenticated encryption we use AES-GCM, and signatures use ECDSA over curve P-256.

Our code is available at https://github.com/eniac/flamingo.
3We assume that in each iteration, the corrupted fraction of n clients is also η; see Section 2.2.3.

33

https://github.com/eniac/flamingo

Distributed decryption. We build the distributed decryption scheme discussed in Section 2.3.4 as

follows. We use ElGamal encryption to instantiate the asymmetric encryption. It consists of

three algorithms (AsymGen,AsymEnc,AsymDec). AsymGen outputs a secret and public key pair

SK ∈R Zq and PK := gSK ∈ G. AsymEnc takes in PK and plaintext h ∈ G, and outputs

ciphertext (c0, c1) := (gw, h · PKw), where w ∈R Zq is the encryption randomness. AsymDec takes

in SK and ciphertext (c0, c1) and outputs h = (cSK0)−1 · c1.

In threshold decryption [GHKR08, DF89, SG02], the secret key SK is shared among L parties

such that each party u ∈ [L] holds a share su, but no single entity knows SK, i.e., (s1, . . . , sL) ←

Share(SK, ℓ, L). Suppose Alice wants to decrypt the ciphertext (c0, c1) using the secret-shared SK.

To do so, Alice sends c0 to each party in [L], and gets back csu0 for u ∈ U ⊆ [L]. If |U | > ℓ, Alice

can compute from U a set of combination coefficients {βu}u∈U , and

cSK0 =
∏
u∈U

(csu0)βu .

Given cSK0 , Alice can get the plaintext h = (cSK0)−1 · c1. Three crucial aspects of this protocol are

that: (1) SK is never reconstructed; (2) the decryption is dropout resilient (Alice can obtain h as

long as more than ℓ parties respond); (3) it is non-interactive: Alice communicates with each party

exactly once.

We implement ElGamal over elliptic curve group G and we use curve P-256. To map the output

of PRF(ri,j , t), which is a binary string, to G, we first hash it to an element in the field of the

curve using the hash-to-field algorithm from the IETF draft [HSS+21, §5]. We then use the SSWU

algorithm [BCI+10, WB19] to map the field element to a curve point P ∈ G. A client will encrypt

P with ElGamal, and then hash P with SHA256 to obtain hi,j,t—the input to the pairwise mask’s

PRG. When the server decrypts the ElGamal ciphertexts and obtains P , it uses SHA256 on P to

obtain the same value of hi,j,t.

Optimizations. In Flamingo’s reconstruction step, we let the server do reconstruction using partial

34

shares. That is, if the interpolation threshold is 15, and the server collected shares from 20 decryp-

tors, it will only use 15 of them and ignore the remaining 5 shares. Furthermore, as we only have

a single set of decryptors, when the server collects shares from U ⊆ D, it computes a single set of

interpolation coefficients from U and uses it to do linear combinations on all the shares. This linear

combination of all the shares can be done in parallel. In contrast, BBGLR requires the server to

compute different sets of interpolation coefficients to reconstruct the pairwise masks (one set for

each client).

Simulation framework. We integrade all of Flamingo’s code into ABIDES [BHB20b, BHB20a], which

is an open-source high-fidelity simulator designed for AI research in financial markets (e.g., stock

exchanges). ABIDES is a great fit as it supports tens of thousands of clients interacting with a

server to facilitate transactions (and in our case to compute sums). It also supports configurable

pairwise network latencies.

2.2.10 Experimental evaluation

In this section we answer the following questions:

• What are Flamingo’s concrete server and client costs, and how long does it take Flamingo to

complete one and multiple iterations of aggregation?

• Can Flamingo train a realistic neural network?

• How does Flamingo compare to the state of the art in terms of the quality of the results and

running time?

We implement the following baselines:

Non-private baseline. We implement a server that simply sums up the inputs it receives from clients.

During a particular iteration, each of the clients sends a vector to the server. These vectors are in

the clear, and may be any sort of value (e.g. floating points), unlike Flamingo, which requires data

to be masked positive integers. The server tolerates dropouts, as Flamingo does, and aggregates

only the vectors from clients who respond before the timeout.

35

BBGLR. For BGGLR, we implement Algorithm 3 in their paper [BBG+20] with a slight variation

that significantly improves BBGLR’s running time, although that might introduce security issues

(i.e., we are making this baseline’s performance better than it is in reality, even if it means it

is no longer secure). Our specific change is that we allow clients to drop out during the graph

establishment procedure and simply construct a graph with the clients that respond in time. BBGLR

(originally) requires that no client drops out during graph establishment to ensure that the graph

is connected. Without this modification, BBGLR’s server has to wait for all the clients to respond

and is severely impacted by the long tail of the client response distribution—which makes our

experiments take an unreasonable amount of time.

Experimental environment

Prior works focus their evaluation on the server’s costs. While this is an important aspect (and we

also evaluate it), a key contributor to the end-to-end completion time of the aggregation (and of

the federated learning training) is the number of round trips between clients and the server. This

is especially true for geodistributed clients.

To faithfully evaluate real network conditions, we run the ABIDES simulator [BHB20a] on a server

with 40 Intel Xeon E5-2660 v3 (2.60GHz) CPUs and 200 GB DDR4 memory. Note that in practice,

client devices are usually less powerful than the experiment machine. ABIDES supports the cubic

network delay model [HRX08]: the latency consists of a base delay (a range), plus a jitter that

controls the percentage of messages that arrive within a given time (i.e., the shape of the delay

distribution tail). We set the base delay to the “global” setting in ABIDES’s default parameters

(the range is 21 microseconds to 53 milliseconds), and use the default parameters for the jitter.

Both Flamingo and BBGLR work in steps; each step is a complete round between server and

clients. We define a waiting period for each step of the protocol. During the waiting period, the

server receives messages from clients and puts the received messages in a message pool. When the

waiting period is over, a timeout is triggered and the server processes the messages in the pool, and

proceeds to the next step. The reason that we do not let the server send and receive messages at

the same time is that, in some steps (in both BBGLR and Flamingo), the results sent to the clients

36

keyad graph shares report check recon100

102

104

106
co

m
m

un
ic

at
io

n
(K

B
) BBGLR

Flamingo

(a) Server communication

keyad graph shares report check recon100

102

104

106

co
m

m
un

ic
at

io
n

(b
yt

es
) BBGLR (all clients)

Flamingo (regular clients)
Flamingo (decryptors)

(b) Client communication

Figure 2.6: Communication costs for different steps in a single summation over 1K clients for
Flamingo and BBGLR.

depend on all the received messages and cannot be processed in a streaming fashion. For example,

the server must decide on the set of online clients before sending the request to reconstruct the

shares.

Secure aggregation costs and completion time

This section provides microbenchmarks for summation tasks performed by BBGLR and Flamingo.

Client inputs are 16K-dimensional vectors with 32-bit entries. For parameters, unless specified

differently later, we set N to 10K and the number of decryptors to 60 in Flamingo; and set the

number of neighbors to 4 log nt for both Flamingo and BBGLR (for BBGLR, this choice satisfies

the constraints in Lemma 4.7 [BBG+20]). In Figures 2.6 and 2.7, “keyad” is the step for exchanging

keys, “graph” is the step for clients to send their choices of neighbors, “share” is the step for clients

to shares their secrets to their neighbors (marked as 1–8 in their Algorithm 3). The steps “report”,

“check” and “recon” in Flamingo are described in Section 2.2.7; in BBGLR, these steps correspond

to the last three round trips in a summation marked as 8–14 in their Algorithm 3.

Communication costs. Figure 2.6 gives the communication cost for a single summation. The total

cost per aggregation for BBGLR and Flamingo are similar. This is because Flamingo’s extra cost

over BBGLR at the report step is roughly the message size that BBGLR has in their three-step

37

CPU costs keyad graph share report check recon

Server (sec)
BBGLR 0.11 0.27 0.09 0.09 0.08 0.76
Flamingo — — — 0.24 — 2.30

Client (sec)
BBGLR <0.01 <0.01 <0.01 0.02 0.01 <0.01
Flamingo

Regular clients — — — 0.22 — —
Decryptors — — — — 0.10 0.56

Figure 2.7: Single-threaded microbenchmarks averaged over 10 runs for server and client computa-
tion for a single summation over 1K clients. “<” means less than.

setup; this is also reflected in the asymptotic cost analysis of Figure 2.5. In short, compared to

BBGLR, Flamingo has fewer round trips with roughly the same total server communication. For

clients, the story is more nuanced: each client has a slightly higher cost in Flamingo than in BBGLR

during the report step, as clients in Flamingo need to append ciphertexts to the vector. However, in

the reconstruction step, clients who are not decryptors will not need to send or receive any messages.

Each decryptor incurs communication that is slightly larger than sending one input vector. Note

that the vector size only affects the report step.

Computation costs. We first microbenchmark a single summation with 1K clients, and set δ to 1%

(i.e., up to 1% of clients can drop out in any given step). This value of δ results in a server waiting

time of 10 seconds. Figure 2.7 gives the results. The report step in Flamingo has slightly larger

server and client costs than BBGLR because clients need to generate the graph “on-the-fly”. In

BBGLR, the graph is already established in the first three steps and stored for the report and

reconstruction step. For server reconstruction time, Flamingo is slightly more costly than BBGLR

because of the additional elliptic curve operations. The main takeaway is that while Flamingo’s

computational costs are slightly higher than BBGLR, these additional costs have negligible impact

on completion time owing to the much larger effect of network delay, as we show next.

Aggregation completion time. To showcase how waiting time w affects dropouts (which consequently

affects the sum accuracy), we use two waiting times, 5 seconds and 10 seconds. The runtime for an

aggregation depends on the timeout for each step, the simulated network delay, and the server and

38

0 1 2 3 4 5 6 7 8 9 10
#summations

0

200

400

600
el

ap
se

d
tim

e
(s

ec
)

BBGLR
Flamingo

(a) Runtime with w = 10.

0 1 2 3 4 5 6 7 8 9 10
#summations

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

BBGLR
Flamingo

(b) Sum accuracy τ ; w = 10.

0 1 2 3 4 5 6 7 8 9 10
#summations

0

200

400

600

el
ap

se
d

tim
e

(s
ec

)

BBGLR
Flamingo

(c) Runtime with w = 5.

0 1 2 3 4 5 6 7 8 9 10
#summations

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

BBGLR
Flamingo

(d) Sum accuracy τ ; w = 5.

Figure 2.8: End-to-end completion time and accuracy of 10 secure aggregation rounds with 1K
clients. The elapsed time is the finishing time of round t. For Flamingo, round 1 includes all of the
costs of its one-time setup, and between round 5 and 6 Flamingo performs a secret key transfer.

client computation time. Figure 2.8a and 2.8c show the overall completion time across 10 iterations

of aggregations. A shorter waiting time makes the training faster, but it also means that there are

more dropouts, which in turn leads to more computation during reconstruction. As a result, the

overall runtime for the two cases are similar. On 1K clients, Flamingo achieves a 3× improvement

over BBGLR; for Flamingo’s cost we included its one-time setup and one secret key transfer. If the

key transfer is performed less frequently, the improvement will be more significant.

The cost of the DKG procedure (part of the setup and which we also added to the first iteration in

Figure 2.8) is shown in Figure 2.9. A complete DKG takes less than 10 seconds as the number of

39

0 1 2 3 4 5 6 7 8 9 10
message arrival time at server (sec)

1
2
3
4

D
K

G
 st

ep
step 1: share and commit step 2: accept or complain step 3: bcast share step 4: bcast qual

Figure 2.9: Generating shares of the secret key among 60 decryptors. The four steps are described in
Section 2.3.4 and given as part (1) in ΠDKG in Appendix A.2.2.

decryptors is not large and we allow decryptor dropouts. For 60 decryptors, the local computation

performed by each decryptor during the DKG is 2 seconds.

Summation accuracy. Figure 2.8b and 2.8d show that Flamingo achieves better sum accuracy τ

(defined in §2.2.3) than BBGLR when they start a summation with the same number of clients.

When the waiting time is shorter, as in Figure 2.8d, in each step there are more clients excluded

from the summation and therefore the discrepancy between Flamingo and BBGLR grows larger.

Feasibility of a full private training session

We implement the federated learning algorithm FedAvg [MMR+17] on the non-private baseline.

We also use this algorithm for Flamingo and BBGLR but replace its aggregation step with either

Flamingo or BBGLR to produce a secure version. Inside of FedAvg, we use a multilayer perceptron

for image classification. Computation of the weights is done separately by each client on local data,

and then aggregated by the server to update a global model. The server then sends the global model

back to the clients. The number of training iterations that clients perform on their local data is

referred to as an epoch. We evaluated Flamingo on epochs of size 5, 10, and 20. We found that

often, a larger epoch was correlated with faster convergence of FedAvg to some “maximum" accuracy

score. Additionally, because our neural network model calculations run very fast—there was, on

average, less than a second difference between clients’ model fitting times for different epochs—and

because Flamingo and the baselines were willing to wait for clients’ inputs for up to 10 seconds, the

epoch size did not affect their overall runtime.

40

0 50 100 150 200 250 300
#training rounds

0
1
2
3
4
5
6
7

el
ap

se
d

tim
e

(h
ou

rs
) BBGLR

Flamingo
Baseline

(a) Run time. EMNIST

0 50 100 150 200 250 300
#training rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
sc

or
e

BBGLR
Baseline
Flamingo

(b) Accuracy. EMNIST

0 50 100 150 200 250 300
#training rounds

0
1
2
3
4
5
6
7

el
ap

se
d

tim
e

(h
ou

rs
) BBGLR

Flamingo
Baseline

(c) Run time. CIFAR100

0 50 100 150 200 250 300
#training rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
sc

or
e

BBGLR
Baseline
Flamingo

(d) Accuracy. CIFAR100

Figure 2.10: Evaluation for full training sessions on EMNIST and CIFAR100 datasets. The number of
clients per round is 128, the batch and epoch sizes for FedAvg are 10 and 20, respectively. Flamingo’s
setup cost is included during the first round, and it performs a secret key transfer every 20 rounds,
which adds to the total run time. The accuracy score is TensorFlow’s sparse categorical accuracy
score [AAB+15].

41

We use two of TensorFlow’s federated datasets [AAB+15]: (1) EMNIST, the Extended MNIST letter

dataset from the Leaf repository [CDW+18, CDW+]; and (2) CIFAR100, from the CIFAR-100 tiny

images dataset [KNH, Kri09]. The EMNIST dataset has ∼340K training/∼40K test samples, each

with a square of 28 × 28 pixels and 10 classes (digits). Each client has ∼226 samples. During

training, we use weight vectors with 8K 32-bit entries. The CIFAR100 dataset has 50K training/10K

test samples, each with a square of 32 × 32 pixels and 100 classes. Each pixel additionally has

red/blue/green values. Each client has 100 samples. To achieve good accuracy for the CIFAR100

dataset, we use a more complex convolutional neural network than we do for the EMNIST dataset, with

extra layers to build the model, normalize inputs between layers, and handle activation functions

and overfitting. This results in longer weight vectors, with 500K 32-bit entries.

We randomly divide the datasets equally among 128 clients to create local data. Local models are

trained with small batch sizes. In Flamingo and BBGLR, all weights (often floating point numbers)

are encoded as positive integers. We do this by adding a large positive constant, multiplying by 212,

and truncating the weight to an unsigned 32-bit integer. Figure 2.10 shows the result with δ = 1%.

Running time. From Figures 2.10b and 2.10d, we see that the EMNIST and CIFAR100 datasets do not

converge until about iteration 150 and 200, respectively, though their accuracy continues to improve

slightly after that. Figures 2.10a and 2.10c show Flamingo’s running time is about 5.5× lower (i.e.,

better) than BBGLR for EMNIST and 4.8× for CIFAR100 and about 1.4× higher (i.e., worse) than the

non-private baseline for EMNIST and 1.7× for CIFAR100. We believe these results provide evidence

that Flamingo is an effective secure aggregation protocol for multi-iteration settings such as those

required in federated learning.

Training accuracy. We measure training accuracy with TensorFlow’s sparse categorical accuracy

score, which is derived based on the resulting model’s performance on test data. Due to the way

in which we encode floating points as integers, a small amount of precision from the weights is lost

each iteration. We compare the accuracy of Flamingo and BBGLR’s final global model to a model

trained on the same datasets with the baseline version of FedAvg (which works over floating points)

in Figures 2.10b and 2.10d. We find that the encoding itself does not measurably affect accuracy.

42

2.2.11 Related work

In this section we discuss alternative approaches to compute private sums and the reasons why they

do not fit well in the setting of federated learning. Readers may also be interested in a recent survey

of this area [MOJC23].

Pairwise masking. Bonawitz et al. [BIK+17] and follow up works [BBG+20, SGA21], of which

BBGLR [BBG+20] is the state-of-the-art, adopt the idea of DC networks [Cha88] in which pairwise

masks are used to hide individuals’ inputs. Such a construction is critical for both client-side and

server-side efficiency: first, since the vectors are long, one-time pad is the most efficient way to

encrypt a vector; second, the server just needs to add up the vectors, which achieves optimal server

computation (even without privacy, the server at least has to do a similar sum). Furthermore,

pairwise masking protocols support flexible input vectors, i.e., one can choose any b (the number

of bits for each component in the vector) as desired. Flamingo improves on this line of work by

reducing the overall round trip complexity for multiple sums.

MPC. Works like FastSecAgg [KRKR20] use a secret-sharing based MPC to compute sums, which

tolerates dropouts, but it has high communication as the inputs in federated learning are large.

Other results use non-interactive MPC protocols for addition [SHY+22, SGA21] where all the clients

establish shares of zero during the setup. And then when the vectors of clients are requested, each

client uses the share to mask the vector and sends it to the server. However, to mask long vectors,

the clients need to establish many shares of zeros, which is communication-expensive. Such shares

cannot be reused over multiple summations (which is precisely what we address with Flamingo).

Furthermore, the non-interactive protocols are not resilient against even one dropout client.

Additively homomorphic encryption. One can construct a single-server aggregation protocol using

threshold additive homomorphic encryption [EDG14, MDC16, PBB09, PBBL11, TBA+19, DSM22].

Each client encrypts its vector as a ciphertext under the public key of the threshold scheme, and

sends it to the committee. The committee adds the ciphertexts from all the clients and gives the

result to the server. However, this does not work well for large inputs (like the large weight vectors

43

found in federated learning) because encrypting the vector (say, using Paillier or a lattice-based

scheme) and performing the threshold decryption will be very expensive.

A recent work [SSV+22] uses LWE-based homomorphic PRGs. This is an elegant approach but it

has higher computation and communication costs than works based on pairwise masking, including

Flamingo. The higher cost stems from one having to choose parameters (e.g., vector length and the

size of each component) that satisfy the LWE assumption, and particularly the large LWE modulus

that is required.

Multi-iteration setting. Recent work [GPS+22] designs a new multi-iteration secure aggregation

protocol with reusable secrets that is very different from Flamingo’s design. The protocol works

well for small input domains (e.g., vectors with small values) but cannot efficiently handle large

domains as it requires brute forcing a discrete log during decryption. In contrast, Flamingo does

not have any restriction on the input domain. A variant of the above work can also accommodate

arbitrary input domains by relying on DDH-based class groups [CL15] (a more involved assumption

than DDH).

44

2.3 Armadillo: Secure aggregation with disruption resistance

2.3.1 Background and summary of contributions

In this section, we focus on how to prevent malicious clients from disrupting the server’s aggregation

result. Federated learning has a large number of training participants, and it is highly likely that

some clients are compromised. However, even a single malicious client could distort the overall

aggregation result.

While disruption resistance has been studied in the context of secure aggregation, most of existing

aggregation systems that tolerates disruption work under a strictly weaker trust model than the

setting we consider in this dissertation. They require two or more non-colluding servers with at least

one being trusted to achieve their goals [CGB17, AGJ+22], yet, in real-world federated learning

deployment the single-server architecture seems to be the only choice: an organization that runs the

training tasks either internally operate their own servers while ensuring isolation among the servers,

which is rarely realistic; or they set up external servers elsewhere, which introduces significant

engineering overhead and operational risks. Indeed, industry precedent has consistently relied on the

single-server model [BIK+17, BBG+20]. The few existing single-server aggregation protocols that

tolerate disruption unfortunately have high costs: Eiffel [CGJvdM22] has a per-client computational

workload quadratic in the number of clients n, and ACORN-robust [BGL+22] despite its modest

client cost has too many rounds to be efficient—a single aggregation takes logarithmic in n and

concretely 10–20 rounds. Some other works [LBV+23] settle for a relatively weak guarantee where

the aggregation has to abort once disruption is detected. That is, there was essentially no affordable

disruptive-resistant secure aggregation schemes under practical adversarial models.

This gap drives our work: we show that ensuring privacy for clients while resisting disruption can

be achieved in only 3 rounds, even in the presence of an adversary controlling the server and a

subset of clients (up to some threshold). Our system Armadillo guarantees the following properties:

1) privacy, i.e., the server learns at most the sum of inputs from clients but nothing else, 2) ro-

bustness, i.e., the server, if following our protocol, is ensured to get the sum regardless how clients

passively drop out or actively disrupt the aggregation. (A malicious client can also use invalid input

45

to disrupt the result, but we show that our system can seamlessly integerate with existing efficient

input validation techniques, resulting in a complete disruption-resistant system.) Our reduction in

round complexity comes at only a slight increase in client computational time, and when integrated

with input validation techniques, client computation in Armadillo is on par with that in ACORN-

robust. Across a range of client population sizes and adversarial fractions, Armadillo outperforms

ACORN-robust by 3× to 7× in rounds.

To achieve disruption resistance, Armadillo uses a generic paradigm: take a secure aggregation

protocol, every client sends to the server a proof that every step of their execution has been done

correctly and the server verifies the proof. The core challenge is to make this efficient because

cryptographic proofs are expensive; in fact, this is more challenging than it may seem—most of the

prior works [BGL+22, LBV+23, CGJvdM22] making strides towards robustness do not follow this

paradigm. We have two key design ideas that make clients and the server computation lightweight.

First, we design a secure aggregation protocol in which the bulk of computation is simple linear

computation, and importantly, it is sufficient to get robustness as long as the clients prove the

correctness of the linear part (which is computationally efficient). Then, we structure all these

proof statements (together with the input validation) as a single inner-product relation, so that

with existing proof systems [BBDBM18] the server can batch verify n proofs at a cost logarithmic

in n.

Armadillo additionally has other beneficial properties in federated learning setting: stateless partic-

ipation of clients, many aggregations followed by a one-time setup, and easy handling for dropouts.

We discuss them in detail in Section 2.3.4.

2.3.2 Setting, threat model, and goals

The problem setting and communication model are the same as Flamingo. We have a star-topology

network with a single server coordinating all the communication, and we assume a PKI that stores

public keys of all the clients.

For the threat model, same as in Flamingo, we assume for each aggregation, at most η fraction of

46

n clients may be malicious, and up to δ fraction may passively drop out (in addition to malicious

dropouts). A major difference is that the server here is assumed to be honest-but-curious (i.e., it

follows the protocol but may try to learn more than what it is supposed to learn). This threat

model captures those settings where the server wants to learn the aggregation results but concerns

about disruptive clients who cause disproportional damage to the result. Many existing aggregation

systems assume one or more semi-honest servers as well [CGB17, AGJ+22, BGL+22].

The system goals include what has been achieved in Flamingo (dropout resilience and privacy),

with a slight difference being that privacy is against an honest-but-curious server. As Flamingo,

Armadillo supports multiple iterations of aggregation; but different from Flamingo, Armadillo does

not require any clients to hold states across iterations.

Definition 2.3.1 (Privacy). We say an aggregation protocol has privacy against a semi-honest

server if the protocol realizes the ideal functionality in Figure 2.11.

The salient aspect here is achieving disruption resistance: the coalition of malicious clients can affect

the aggregation result only by misreporting their private inputs. This is formalized in Definition 2.3.2

below.

Definition 2.3.2 (Disruption resistance [CGB17]). Let f be an aggregation function that takes in n

inputs x1, . . . ,xn. Let Z be a user-defined set of valid inputs, i.e., we say x is a valid input for f if x ∈

Z. We say that an n-client aggregation protocol has disruption resistance if, when the server follows

the protocol, for every number of m clients (with 0 ≤ m ≤ n) and for every choice of honest client’s

inputs Ihonest ∈ Zn−m, the server outputs a value in the set {f(Ihonest, Imalicious) | Imalicious ∈

Zn−m}. If we relax Z to be the set of all possible inputs for f , then we say the protocol has

robustness.

2.3.3 Cryptographic building blocks

Notation. Let [z] denote the set {1, 2, . . . , z}. We use [a, b] to denote the set {x ∈ N : a ≤ x ≤ b}.

We use bold lowercase letters (e.g. u) to denote vectors and bold upper case letters (e.g., A) to

denote matrices. Unless specified, vectors are column vectors. Given a value α and a vector v,

47

Functionality F

Parties: A set of n clients P1, . . . , Pn and a server S.
Notation: Let corruption rate be η and dropout rate be δ, both among P = {P1, . . . , Pn}. Let A be the
adversary corrupting S and the set of clients of size ηn, Cor.

• F and A receive a set of dropout clients O ⊂ P where |O|/|P| ≤ δ. F receives xi of client Pi ∈ P\O.

• F asks A for a set E with the requirements that: |E ∪ O|/n ≤ δ.

• If A replies F with a set E that satisfies the requirement, then F outputs z =
∑

i∈P\(E∪O∪Cor) xi to
A. Otherwise, F send terminate to all parties.

Figure 2.11: Ideal functionality for one aggregation. We follow the definition in prior works [BIK+17,
BBG+20] assuming an oracle gives a dropout set to F and adversary A can also query the oracle.

we use αv to denote multiplying α to every coordinate of v. For distribution D, we use a ← D

to denote sampling a from D. For a vector v, we use ⌊v⌉c to denote rounding each entry of v to

nearest multiples of c. For two vectors v1 of length ℓ1, v2 of length ℓ2, we use v1|v2 to denote the

concatenation of them which is a vector of length ℓ1 + ℓ2. We use ∥v∥2 to denote L2 norm of v and

use ∥v∥∞ to denote the largest entry in v. We use F to denote a field.

Regev’s encryption. Our construction utilizes the key-and-message homomorphism Regev’s en-

cryption [Reg05]; we give the details below. The Regev’s scheme is parameterized by a security

parameter λ, a plaintext modulus p, and a ciphertext modulus q, and number of LWE samples m.

Given a secret key s
$←− Zλ

q , the encryption of a vector x ∈ Zm
p is

(A, c) := (A,As+ e+∆ · x),

where A
$←− Zm×λ

q is a random matrix (m > λ), e
$←− χm is an error vector and χ is a discrete

Gaussian distribution, and ∆ := ⌊q/p⌋. Decryption is computed as (c −As) mod q and rounding

each entry to the nearest multiples of ∆, and then divide the rounding result by ∆. The decrypted

result is correct if entries in e are less than ∆/2.

Packed secret sharing. In standard Shamir secret sharing [Sha79], a secret ρ ∈ F is hidden as

the constant term of a polynomial p(x) = a0 + a1x + · · · + atx
d where a0 = ρ and a1, . . . , ad are

randomly sampled from F. Given n parties, the share for party i ∈ [n] is p(i), and any subset of at

48

least d+ 1 parties can reconstruct ρ and any subset of d shares are independently random.

In packed secret sharing [FY92], one can hide multiple secrets using a single polynomial. Specifically,

let F be a field of size at least 2n and k be the number of secrets packed in one sharing. Packed

Shamir secret sharing of (v1, . . . , vk) ∈ Fk first chooses a random polynomial p(·) ∈ F[X] of degree

at most d + k − 1 subject to p(0) = v1, . . . , p(−k + 1) = vk, and then sets the share ρi for party i

to be ρi = p(i) for all i ∈ [n]. Reconstruction of a degree-(d+ k − 1) sharing requires at least d+ k

shares from ρ1, . . . , ρn. Note that the corruption threshold is now d even if the degree is d+ k − 1,

i.e., any d shares are independently random, but any d+ 1 shares are not.

Shamir sharing testing. Looking ahead, we will also use a probabilistic test for Shamir’s secret

shares, called SCRAPE test [CD17]. To check if (ρ1, . . . , ρn) ∈ Fn is a Shamir sharing over F of

degree d (namely there exists a polynomial p of degree ≤ d such that p(i) = ρi for i = 1, . . . , n),

one can sample w1, . . . , wn uniformly from the dual code to the Reed-Solomon code and check if

w1ρ1 + · · ·+ wnρn = 0 in F.

To elaborate, let ci :=
∏

j∈[n]\{i}(i−j)−1 and m∗(X) :=
∑n−d−2

i=0 mi ·Xi ←$ F[X]≤n−d−2 (a random

polynomial over F of degree at most n − d − 2). Now, let w := (c1 · m∗(1), . . . , cn · m∗(n)) and

ρ := (ρ1, . . . , ρn). Then,

• If there exists p ∈ F[X]≤d such that ρi = p(i) for all i ∈ [n], then ⟨w,ρ⟩ = 0.

• Otherwise, Pr[⟨w,ρ⟩ = 0] = 1/|F|.

In other words, if (ρ1, . . . , ρn) is not a Shamir sharing of degree d then the test will only pass with

probability 1/|F|.

Pedersen and vector commitment. Let G be a group of order q, and G,H be two generators

in G. A Pedersen commitment to a value v ∈ Zq is computed as comG(v) := GvHr, where the

commitment randomness r is uniformly chosen from Zq. We use comG(·) notation because later in

our protocol we compute commitments with different generators.

We can also commit to a vector v = (v1, . . . , vL) ∈ ZL
q as follows: let G = (G1, . . . , GL) be a list of

49

L random generators in G, define comG(v) := Gv1
1 · · ·G

vL
L ·Hr, where r is randomly chosen from

Zq; our notation comG(·) implictly assumes a public H and a private r are included. In a special

case that we will get to in Section 2.3.4 and 2.3.4, we do not include randomness in the commitment.

Inner-product proof. The inner product argument is an efficient proof system for the following

relation: given two vector commitments com(a), com(b) known to both prover and verifier and a

public value c, the prover can convince the verifier that ⟨a,b⟩ = c. Bulletproof [BBDBM18] gives

non-interactive inner-product proof system with proof size O(logL) and prover/verifier cost O(L).

For ease of presentation later, we introduce the following notations for proof. A proof system Π

consists of a tuple of algorithms (P,V) run between a prover and verifier. An argument to prove can

be described with public inputs/outputs io, a statement to be proved st, and a private witness wt.

Given a proof system Π, the prover can generate a proof π ← Π.P(io, st,wt) and the verifier checks

the proof by b← Π.V(io, st, π) where b ∈ {0, 1} indicates rejecting or accepting π. For example, for

proving inner product of a and b, we set the constraint system to be

{io : (com(a), com(b), c), st : ⟨a,b⟩ = c, wt : (a,b)}.

Denote the inner product proof system as Πip, the prover runs π ← Πip.P(io, st,wt) and the verifier

runs b ← Πip.V(io, st,wt). The algorithms Πip.P and Πip.V both have complexity linear to the

length of a (or b) and π has logarithmic length of a (or b). We will also prove linear-relation, and

we denote the proof system as Πlinear and the constraint system will be

{io : (com(b), c), st : ⟨a,b⟩ = c, wt : b}.

To differentiate the two proof systems, we call the former (that needs to commit to both vectors in

the inner product) as quadratic proof and the later (that only needs to commit to one vector in the

inner product) as linear proof.

Below we briefly review two small primitives we will use later in our protocol.

50

Public key encryption. A public key encryption (PKE) scheme allows a sender to encrypt a

message using a recipient’s public key such that only the corresponding secret key can decrypt it.

Formally, a PKE scheme consists of three algorithms:

• Gen(1λ)→ (pk, sk): on input a security parameter λ, generates a public-secret key pair;

• Enc(pk,m)→ c: on input a message m and public key pk, output a ciphertext c;

• Dec(sk, c)→ m: on input a ciphertext c and secret key sk, output a message m.

We require correctness (i.e., decryption recovers the original message) and semantic security (i.e.,

ciphertexts leak no information about the plaintext without the secret key).

MAC. A message authentication code (MAC) is a symmetric primitive used to ensure data in-

tegrity and authenticity. It consists of two algorithms:

• Mac(k,m)→ t: on input a key k and a message m, outputs a tag t;

• MacVer(k,m, t)→ b: on input a key k and message m and a tag t, outputs b ∈ {0, 1} indicates

whether t is an invalid tag or valid for m under key k.

MACs are required to be unforgeable: no efficient adversary can produce a valid tag for a new

message without knowledge of the secret key k.

2.3.4 Protocol design

Now we describe our construction for computing a single sum (one iteration in the training). Our

full protocol is shown in Figures B.1 and B.2; below we describe our main technical ideas. We

discuss computing multiple sums and the related security consideration in Section 2.2.8.

A two-layer secure aggregation

The key idea is to reduce an aggregation for long vectors to an aggregation for short vectors. To

substantiate this idea, we utilize the key-and-message homomorphism of Regev’s encryption.

Given two Regev ciphertexts (A, c1), (A, c2) of vectors x1,x2 under the key s1, s2 with noise e1, e2,

51

the tuple (A, c1+ c2) is an encryption of x1+x2 under the key s1+ s2. The ciphertext (A, c1+ c2)

can be properly decrypted if e1 + e2 is small. Note that computing c1 + c2 is very efficient—it is

simply vector addition.

We define a tuple of algorithms (Enc,Dec) parameterized by (p, q, λ,m,A ∈ Zm×λ
q) as follows:

• Enc(s,x)→ y: on input a secret key s ∈ Zλ
q and a message x ∈ Zm

p , output y := A·s+e+∆·x,

where ∆ = ⌊q/p⌋.

• Dec(s,y)→ x′: on input a secret key s ∈ Zλ
q and a ciphertext y ∈ Zm

q , output x′ := ⌊y−As⌉∆.

Now we decribe how our protocol work at a high level. Each client i ∈ [n], holding an input vector

xi ∈ Zℓ
p (we can set m = ℓ in Enc/Dec), samples a Regev encryption key si ∈ Zλ

q and sends the

encrypted vector yi = Enc(si,xi) := Asi + ei +∆ · xi to the server. Note that λ ≪ ℓ. The server

computes the sum of yi’s as

y :=
∑
i∈[n]

yi =
∑
i∈[n]

Asi + ei +∆ · xi = A
∑
i∈[n]

si +∆
∑
i∈[n]

xi +
∑
i∈[n]

ei,

To reconstruct
∑

i∈[n] xi, the server needs s :=
∑n

i=1 si to decrypt y, and the decryption succeeds

if
∑

i∈[n] ei < ∆/2. We call the sum of Regev’s ciphertexts yi’s as outer aggregation, and next we

discuss inner aggregation where the server gets sum of si’s.

The inner aggregation could be instantiated with a naive secure multi-party computation over the n

clients: each client i secret shares si coordinate-wise to all the other clients (the shares are encrypted

using public keys of the recipient clients and sent through the server), and each client adds up the

shares which is then sent to the server for reconstruction of s. However, this naive approach has per

client communication O(nλ) and server communication O(n2λ). The former is too much for a client

given λ is a security parameter and is typically from a few hundreds to a thousand; and the latter is

too much for the server because it is quadratic in n. We reduce the communication complexity with

two techniques: 1) let C ≪ n, sample C clients from the whole population as decryptors to assist

52

with the secure computation4; 2) each client i uses packed secret sharing (§2.3.3) to share its secret

vector si to the decryptors. The combination of these two techniques reduces the communication

complexity per client to O(λ) and per decryptor to O(n), and the server communication complexity

is O(Cn).

This inner-outer aggregation has a key advantage in handling dropouts, unlike the pairwise masking

approach used in prior works [BIK+17, BBG+20, MWA+23], which incurs extra rounds. Specifically,

if a client drops out while sending yi or shares in the outer aggregation, the server can safely ignore

the client without affecting subsequent steps. If a decryptor client drops out during the inner

aggregation, the server can still reconstruct s due to the threshold nature of secret sharing.

In the next few sections, we discuss how to make this simple protocol robust against malicious

clients (including the decryptors) in two parts: 1) proof of linear computation and 2) an agreement

protocol for inner aggregation.

Remark 4. As observed in a few works in orthogonal areas [HHCG+23, DPC23], Regev’s encryption

remains secure even if A is made public and the same matrix A is used to encrypt polynomially

many messages, as long as the secret key s and the noise e are independently chosen in each instance

of encryption. Later in our protocol, A is a public random matrix and it can be generated by a

trusted setup [DKIR21, clo] (who generates a seed and the parties use PRG to expand the seed to

matrix A). Since A can be reused, so this setup only needs to run once.

Proof of client computation

Our high-level idea is “commit-and-proof”: each client sends to the server commitments to its private

values (e.g., commitment to si) together with a proof of the following relations. Let F,G,H be

vectors of group generators in G of length λ, ℓ, ℓ respectively. Suppose client i sends to the server

comF(si), comG(ei), comH(xi), in addition to yi as specified in the outer aggregation. The client

proves to the server that:

1. For the outer aggregation, yi := A · si + ei +∆ · xi mod q, with ei having small L∞ norm.
4We show that C can be polylogarithmic in n to have this work (§2.2.8).

53

2. For the inner aggregation, the client secret-shares si to the decryptors using a polynomial of

degree d (the degree d is fixed by the threat model parameters).

Next, we express these requirements (except the norm condition which is non-linear) as inner-

product relations. We will address proving the norms in Section 2.3.4. We set LWE modulus q to

match the field size of the commit-and-proof system.

Proving the first statement. At the first glance, we need to prove that each coordinate of yi equals

the corresponding coordinate of the RHS computation result. This would require ℓ proofs, one for

each coordinate. We instead use a polynomial checking technique from Schwartz-Zippel Lemma to

compress the proofs to a single one. In particular, if we want to check if two vectors of length ℓ over

Zq are equal, we view each vector (e.g., yi) as coefficients of a degree-ℓ polynomial and check if the

evaluation of the two polynomials on a random point are equal. If they are indeed not equal, then

the evaluation will be different except probability ℓ/q. Formally, let r ∈ Zq be a random challenge

value picked by the server (who is the verifier), and let r = (r0, r1, . . . , rℓ−1). Let c = ⟨yi, r⟩, and

c is a public value since yi and r are both public (known to both the client and the server). If the

client can prove to the server that

c = ⟨A⊤r | r | ∆r, si | ei | xi⟩ in Zq,

then the server will be convinced that yi := A ·si+ei+∆ ·xi, and there will only be ℓ/q probability

that the client is dishonest but the server is convinced. The inner product argument comes from

the following:

⟨yi, r⟩ =⟨Asi, r⟩+ ⟨ei, r⟩+∆⟨xi, r⟩

=⟨A⊤r, si⟩+ ⟨r, ei⟩+ ⟨∆r,xi⟩

=⟨A⊤r | r | ∆r, si | ei | xi⟩.

Also, note that A⊤r | r | ∆r is public, the client only needs to do a linear proof, where the witness

is under the commitment comF|G|H(si|ei|xi).

Proving the second statement. Recall that the client sends comF(si) to the server in the outer ag-

54

gregation, and now we want to ensure that the shares that the decryptors received (for the inner

aggregation) are indeed the Shamir shares of this committed si. Here we can exactly use the

SCRAPE test (§2.3.3) to express this constraint as an inner product relation; this test seamlessly

works with packed secret sharing.

Formally, supppose client i has a packed Shamir sharing of si as a vector of length C (recall that

there are C decryptors)

ρi = (ρ
(1)
i , . . . , ρ

(C)
i),

which the client claims is a sharing of degree d over Zq. We observe that checking if ρi is a packed

sharing of si is equivalent to checking if (ρi | si) is a sharing of length C+λ of a degree-d polynomial.

Therefore, we let the client commit to ρi under a new generator vector K = (K1, . . . ,KC) ∈ GC ,

and sends comK(ρi) to the server in the outer aggregation as well. Then the client invokes a

linear-relation proof that

⟨ρi | si, w⟩ = 0 in Zq,

where w := (w(1), . . . , w(C+λ)) is sampled uniformly random from some code space (details in §2.3.3)

and is public (known to both the server and client). In our setting, we cannot let the client choose

w since the client may be malicious, so we apply the Fiat-Shamir transform and have client i derive

w by hashing comK(ρi) · comF(si).

Up to this point, we have not guaranteed the shares received by the decryptors are consistent with

the commitment comK(ρi). The reason is that the client could in fact send to a decryptor a share

(under the encryption) that is different from what was committed to. Therefore, instead of having

the client send comK(ρi) to the server, we have the client send commitments to each coordinate of

ρi, namely comK1(ρ
(1)
i), . . . , comKC

(ρ
(C)
i). Since the shares are random and in a sufficiently large

space, we will compute the commitment to a share ρ simply as Kρ
j . The server can still verify the

proof for packed sharing, as it can compute the vector commitment comK(ρi) from the individual

C commitments as

comK(ρi) = comK1(ρ
(1)
i) · · · comKC

(ρ
(C)
i).

55

For those clients whose proofs are valid (for both Enc computation and SCRAPE test), the server

forwards their commitments to the corresponding decryptors where ρ
(j)
i is intended for the j-th

decryptor. Then each decryptor j verifies if the received share (after decryption) is consistent with

the commitment comKj (ρ
(j)
i).

Agreement protocol for decryptors

So far, each decryptor can identify a set of valid shares by verifiying the commitments. However, this

alone is not enough for the server to obtain the correct sum, as illustrated in the following example.

Suppose there are three clients P1, P2, and P3, with P3 being malicious, and three decryptors H1,

H2, and H3, with H3 being malicious. Each client shares a secret using 2-out-of-3 Shamir sharing.

If P3 sends a valid share to H1 but an invalid share to H2, the decryptors will form the sets of

clients with valid shares as follows:

• H1 forms {P1, P2, P3},

• H2 forms {P1, P2},

• H3 can form any arbitrary set, e.g., {P3}.

If each decryptor adds up the valid shares locally, the resulting values will not reconstruct the sum

of the secrets from any set of clients. The server can only reconstruct a meaningful sum if the

decryptors adds up shares from the same set of clients.

Our goal is to ensure that all honest decryptors agree on the same set of clients with valid shares.

Although this seems like a consensus problem that may require many rounds, we leverage the

observation that the communication through a semi-honest server is equivalent to a broadcast

channel between the decryptors. We borrow ideas of proof of decryption from Benhamouda et

al. [BHK+24] to build an agreement protocol to ensure decryptors agree on the same set of clients.

The clients in the first round send their shares to decryptors encrypted under the decryptors’ public

keys. If a decryptor j decrypts a share ρ and finds that it is not consistent with the commitment Kρ
j ,

then it sends a verifiable complaint to the server: the share ρ (in the clear) and a zero-knowledge

56

proof of decryption relative to pkj (which is published at PKI). The server can verify the complaint

(because it knows the share in the clear and the ciphertext from the first round) and informs all the

decryptors of the lying clients. Every decryptor removes the lying clients from their set. Since the

server is semi-honest, all the decryptors at this point should agree on the same set. Finally, they

can add up the shares of this set and send the result to the server. The server can reconstruct the

sum, applying error correction if there are bogus shares from malicious decryptors.

Since the public-key encryption is black box in this agreement protocol, we can instantiate it with

any scheme as long as it has fast proof of decryption. See Appendix B.2 for details.

Integrating with proof of norms

Our protocol can be seamlessly integrated with existing vector norm validation techniques [BGL+22,

GHL22]. Now we describe how a client proves a vector xi has bounded L2, L∞ norms; this also

applies to proving norms of the LWE error vector ei that we mentioned earlier. Below, we represent

an integer as a number in Zq where the negative numbers are in (−q/2,−1] and the positive numbers

are in [0, q/2]. We will use the term “ZKPoK” to denote zero-knowledge proof of knowledge.

We first introduce a primitive that we will use as blackbox called approximate proof of L∞-

smallness [LNS21]. This proof system has a large multiplicative gap γ between the L∞ norm

of the vector and what the prover can prove: for a vector a and a bound B that we wish to impose

on a, either the prover is honest and ∥a∥∞ < B, or the prover is dishonest and ∥a∥∞ < γB. We

defer the construction of approximate proof to Appendix B.1, but in short, an approximate proof

for length-ℓ vector just invokes a linear proof of length ℓ+σ where σ is a security parameter usually

taken as 256.

The idea underlying proof of L2 and L∞ norms is the same: Assuming the bound B we want to

prove is much smaller than q, to prove a number x is bounded by B in a field Zq, we find four

57

integers a1, a2, a3, a4 such that5

B2 = x2 + a21 + a22 + a23 + a24,

and the proof consists of two parts:

• Use the underlying commit-and-prove systems to show that this equality holds modulo q,

• Use approximate proof to show that the numbers x, a1, . . . , a4 are small enough so that they

do not trigger a wraparound modulo q.

For wraparound, we require x, a1, . . . , a4 are all smaller than
√

q/10 (this is a necessary condition

for x2 + a21 + · · ·+ a24 < q/2 to hold).

To prove a length-ℓ vector x has L2 norm bounded by B, we find four integers a1, . . . , a4 such that

B2 = ∥x∥22 + a21 + · · ·+ a24,

and define v = x|(a1, . . . , a4). The prover provides a ZKPoK that ∥v∥22 = B2 mod q, and provides a

ZKPoK showing that ∥v∥∞ <
√
q/2(ℓ+ 4). The former can be done using an inner-product proof

system, and the latter can be done using approximate proof.

Proving L∞ is similar but with a difference that we need to find four squares for each entry of the

vector b− x where b := B · 1. Namely, there exist a1, . . . ,a4 such that

x+ a1 ◦ a1 + · · ·+ a4 ◦ a4 = b.

We apply Schwartz-Zippel to this equation. Let r := (r0, r1, . . . , rℓ−1) where r is random in Zq,

⟨r,x+ a1 ◦ a1 + · · ·+ a4 ◦ a4⟩ = ⟨r,b⟩.
5Any positive integer can be decomposed into four squares and finding the four squares can be done in O(log2 a)

time [RS86].

58

We rewrite the above equation as

⟨r ◦ x,x⟩+ ⟨r ◦ a1,a1⟩+ ⟨r ◦ a2,a2⟩+ ⟨r ◦ a3,a3⟩+ ⟨r ◦ a4,a4⟩ = ⟨r,b⟩, (2.1)

which is exactly an inner product relation:

⟨r ◦ x|r ◦ a1| · · · |r ◦ a4,x|a1| · · · |a4⟩ = ⟨r,b⟩. (2.2)

Note that the RHS of Equation 2.2 is a public value. We commit to z = x|a1| · · · |a4, and commit to

r′ ◦ z where r′ = r|r|r|r|r, and proving the relation in Equation 2.2 goes in two steps: first, invoke

any inner-product proof system for Equation 2.2, and second, prove that the messages underlying

the two commitments indeed have a linear relation w.r.t. r′. For the latter, suppose the prover

commits to y claimed to be r′ ◦ z. The prover can prove y = r′ ◦ z using an inner product proof as

follows. Let α be a random challenge in Zq, and α = (1, α, . . . , αℓ−1). Then

⟨α,y⟩ = ⟨α, r′ ◦ z⟩ = ⟨α ◦ r′, z⟩,

and we rewrite as

⟨α−α ◦ r′,y − z⟩ = 0. (2.3)

Note that α◦ r′ is public, and the commitment to y−z can be easily computed from the individual

commitments to y and z. Now we can invoke a linear proof for Equation 2.3, with the public vector

being α−α ◦ r′ and the secret vector being y − z.

To summarize, proving L2 norm requires a length-(ℓ + 4) quadratic proof, and a length-(ℓ + 4)

approximate proof which can be instantiated using a length-(ℓ + 260) linear proof. Proving L∞

norm requires a length-(5ℓ) quadratic proof, and a length-(5ℓ) linear proof. We can further reduce

the proof cost by decomposing to three numbers if one can afford one bit leakage [GHL22], and

therefore the vector length for proof of L2 norm becomes ℓ + 3 and the vector length for proof of

L∞ norm becomes 4ℓ.

59

Combined with the linear proof of encryption and secret sharing, the overall cost for proof is

summarized as follows.

Lemma 2.3.3 (Cost for proof of encryption and norms). Given a set of parameters (λ, ℓ, q, C) and

let s ∈ Zλ
q , s ∈ ZC

q ,M ∈ Zλ×C
q ,x ∈ Zℓ

q. Let G be a group of size q. Let ∆ be a constant. Let

CSenc : {io : (com(s), com(x), com(e)),

st : y = A · s+ e+∆ · x, ∥x∥2 < Bx(L2),

∥x∥∞ < Bx(L∞), ∥e∥∞ < Be(L∞),

wt : (s,x, e)}.

There exist a commit-and-proof protocol Πenc (Appendix B.3) with group G of order q for proving

the above statement with the following cost, dominated by the inner-product proof (either linear proof

or quadratic proof) invocations:

• Quadratic proofs: 2 length-(4ℓ), 1 length-ℓ,

• Linear proofs: 2 length-(4ℓ), 1 length-ℓ, 1 length-(2ℓ+ λ), 1 length-(λ+ C),

where we omit the lower order terms and write e.g., ℓ+ 256 as ℓ.

Electing decryptors

The focus of previous sections is the aggregation protocol and we therefore assumed there already

exists a set D of decryptors with corruption rate ηD before the aggregation starts. In fact, ηD

depends on the exogenous parameter η∗ and how we sample D. In this section, we describe the

sampling and the relation between ηD and η∗. We will leave the analysis of how large the set D

need to be in Section 2.2.8.

We use a sampling protocol by Alon et al. [ANOS24], and this does not require additional assump-

tions like random beacon used in a prior work Flamingo [MWA+23]. Their core building block is

Feige’s election protocol [Fei99]: suppose for now we have a public bulletin board, and we want to

sample (roughly) X out of N clients. We initialize N/X bins on the bulletin board. Each client

60

jumps into a bin independently at random (malicious clients may not do it randomly). Then we

take the smallest bin as the set of decryptors. This simple sampling actually ensures that when the

total population has a corruption rate η, the sampled set (with size at most X) also has a corruption

rate bounded by η∗

1−2ϵ , except probability N · eΩ(−ϵ4X) [Fei99, KMSW22]. The protocol of Alon et

al. [ANOS24] eliminates the need for the bulletin board and extends Feige to work exactly under our

communication model (§2.2.3); their protocol is more sophisticated but the key take away is that:

if we have corruption rate η∗ over all clients, then their protocol will elect a set with corruption rate

ηD ≤ 2η∗ except with negligible probability, as long as the target X is at least polylogarithmic of

N .

2.3.5 Security analysis and parameter selection

Parameters. The system Armadillo has a set of parameters listed below. First, n is the number

of clients per round. (λ, ℓ, p, q) are LWE parameters (for the outer aggregation), (C, d, λ) are secret-

sharing parameters (for the inner aggregation), where C is the number of shares (which equals to

the number of decryptors), d is the degree of the secret-sharing polynomial and λ is the number of

secrets. Bx(L∞), Bx(L2), Be(L∞) are bounds on norms. The parameters n and the norm bounds

depends on the machine learning setting which is orthogonal to security analysis. For (λ, ℓ, p, q), we

can choose any secure instance of LWE [APS15, CCSL24, DSDGR20].

The choice of C and d is shown below. Recall that in our protocol (§2.3.4), each client secret-shares

a vector of length λ using a polynomial of degree d. We must have

d− λ > C · ηD by security of packed secret sharing,

d < C(1− δD) necessary condition to reconstruct the secret.

C · ηD <
(1− δD)C − d+ 1

2
in order to do error correction.

We combine the equations and get

CηD + λ < d < C(1− δD − 2ηD). (2.4)

61

We need to ensure C is at least polylogarithmic in the total population so that ηD ≤ 2η (§2.3.4),

and we choose C > λ/(1− δD − 3ηD) and set d accordingly.

Let Φ denote the protocol in Figures B.1 and B.2 i.e., Φ is a protocol running between n clients

and the server, where each client i has inputs xi ∈ Zℓ
q and the server has no input. We describe the

ideal functionality of Φ in Figure 2.11.

Theorem 2.3.4. Let (δ, η, δD, ηD) be threat model parameters defined in Section 2.2.3, and D is

a set of clients randomly subsampled from total N clients prior to aggregation. Let (λ, ℓ, p, q) be

LWE parameters. If (λ, ℓ, p, q) is a secure LWE instance, and |D| > λ/(1− δD − 3ηD), then under

the communication model defined in Section 2.2.3, protocol Φ (Fig.B.1,B.2) securely realizes ideal

functionality Fsum (Fig.2.11) in the presence of a semi-honest adversary controlling the server, η

fraction of n clients for each aggregation and ηD fraction of clients in D. Also, Π satisfies disruption

resistance in Definition 2.3.2.

2.3.6 Implementation and optimization

Sparse LWE. The bulk of server-side decryption lies in computing the matrix-vector product A ·

s. When A is sparse, that is, most of its entries are zero, this computation can be significantly

accelerated. To realize this, we can replace the standard LWE assumption used in Regev’s encryption

scheme with Sparse LWE assumption; by increasing the length of the secret to 1.5× of its size in

the LWE instance, we maintain the same security level with the LWE instance [JLS24].

Multi-exponentiation. Naively computing commitments to a length-m vector requires m + 1 group

exponentiations and m group multiplications (§2.3.3). We can reduce the number of group expo-

nentiations to sublinear in m using the Pippenger algorithm, given in Lemma 2.3.5. In short, the

Pippenger algorithm requires only a small number of expensive group exponentiation (e.g., σ is typ-

ically no larger than 256) by increasing the cheap group multiplication by a factor of σ. Therefore,

we can use Pippenger for Pedersen vector commitment in any of our inner-product proofs.

Lemma 2.3.5 (Complexity of Pippenger algorithm [Pip, Boo17, Fen23]). Let G be a group of order

q ≈ 2σ, and G1, . . . , Gm be m generators of G. Given v1, . . . , vm ∈ Zq, Pippenger algorithm can

62

compute Gv1
1 · · ·Gvm

n using 2σm
logm group multiplications and σ group exponentiations.

Optimistic batch verification. There are two verification steps we can optimize. First, each helper

verifies that each online client i’s share ρi matches the commitment comK(ρi) = Kρi where K is

the generator of G. Doing this individually for each share requires up to n group exponentiations;

exponentiation is an expensive operation. We can apply batch verification technique [BGR98]

to reduce the number of exponentiations to sublinear in n. Say the helper has shares ρ1, . . . , ρn

and it wants to batch verify if they match with comK(ρ1), . . . , comK(ρn) respectively. It samples

random values α1, . . . , αn in Zq where q is group order and checks if α1ρ1 + · · · + αnρn matches

comK(ρ1)
α1 · · · comK(ρn)

αn . The batch verification only needs a length-n inner product on Zq and

a single length-n multi-exponentiation.

The batching technique can also be applied to proof verification at the server. For this we open the

black box of the inner-product proof system and utilize a property of Bulletproof [BBDBM18] that

allows much faster batch verfication than verifying each proof individually. To verify a quadratic

proof of length ℓ, the verifier computation can be abstracted as6

Gz ?
= Pr, (2.5)

where G is a vector of group generators of length-2ℓ and P is the proof transcript which consists

of 2 log ℓ group elements. The exponents z, r only depend on the verifier challenges. Verifying n

quadratic proofs naively would require the server to compute n multi-exponentiation of length 2ℓ

(LHS of 2.5), and n multi-exponentiation of length 2 log ℓ (RHS of 2.5).

The key idea is that the LHS of 2.5 can be computed for a batch of n proofs using a single multi-

exponentiation instead of n multi-exponentiations; the insight is that all the proofs share the same

generators G. To batch verify n proofs with exponents z1, . . . , zn, the verifier (server) can sample
6The linear proof can be abstracted the same way with length-ℓ vector G.

63

random α1, . . . , αn and computes z′ = α1z1 + · · ·+ αnzn and checks if

Gz′ ?
= Pα1r1

1 · · ·Pαnrn
n , (2.6)

where Pi and ri are from the RHS of equation 2.5 for client i’s proof. For LHS of 2.6, the server

computes a single multi-exponentiation of length 2ℓ. For RHS of 2.6, the server computes a single

multi-exponentiation of length 2n log ℓ.

In both the above cases, if there exists malicious clients such that the batch verification returns

false, then the helper (or the server) can divide the shares (or the proofs) into smaller groups and

recursively apply batch verification until it identifies the malicious client.

Other details. For machine learning applications, it is not necessary to find four squares that sum

exactly to the input. Instead, it suffices to find four squares whose sum approximates the input

closely. Therefore, we can use greedy algorithm to find the squares. For every integer in [0, 216], the

greedy approach consistently finds four squares whose sum is within 10 of the original value.

2.3.7 Evaluation

In this section, we provide benchmarks to answer the following questions:

• What are Armadillo’s concrete costs of the clients and the server, for aggregation and proofs,

respectively?

• What is the cost of the decryptors and how does it compare to the cost of regular clients?

• How does Armadillo’s performance compare to prior robust secure aggregation protocols?

Selecting a proper baseline. The most relevant work is ACORN-robust [BGL+22]: they provide the

same input validation but achieve robustness in a very different way. ACORN-robust follows the

pairwise masking approach in Bell et al. [BBG+20], but they additionally have a dispute protocol

to iteratively find cheating clients and remove their inputs from the aggregation result. The other

prior work with disruption resistance is Eiffel [CGJvdM22], but their per-client work is O(n2ℓ)

64

which is not feasible for computationally restricted devices. Other works like RoFL [LBV+23],

ACORN-detect [BGL+22] have strictly weaker property: the server has to abort the aggregation

once a malicious client has been detected. Therefore, we identify ACORN-robust as the only valid

baseline.

Libraries and testbed. We implement our protocol using Rust. We choose Rust because many zero-

knowledge proof systems are implemented using this language, due to its performance, safety, and

ecosystem support. This makes it easy to swap in alternative proof systems if needed. We instantiate

the inner-product proof using Bulletproof [BBDBM18]. We use the dalek library [dVYA18] for

elliptic curve cryptography. We run our experiments on a 2.4GHz Apple M2 CPU.

Concrete parameter selection. The proof system implemented in dalek library is based on Ristretto

group. So we set the LWE modulus q equal to the group order which is a 253-bit prime.7 To control

the noise growth in ciphertext computation, we require n · Be < ∆/2, i.e., 2pnBe < q. According

to the LWE estimator [APS15], we can set λ to be 256, s uniform in Zq, and the error uniform in

Z2214 , which gives 132 bits of security; this supports plaintext modulus p = 216 with summation up

to 5K clients, sufficient for federated learning applications [KMA+21, Table 2].

Following prior work [BGL+22], we use input lengths close to powers of two for benchmarking.

Since the inner-product proof system is most efficient when applied to vectors of length exactly

equal to a power of two, we set the aggregation input to be slightly shorter than a power of two,

and this ensures that the input to the proof system has length exactly power-of-two, minimizing

the overhead from padding.

Central theme in evaluation. Experiments in the following sections will substantiate a central argu-

ment we make: while Armadillo has similar computational cost as ACORN-robust, the reduction

in round complexity plays a crucial role in lowering the end-to-end runtime. The key to this im-

provement lies in the interplay between the allowed dropout rate and server waiting time, which we

explain in detail in Section 2.3.7.
7One could use a LWE modulus that is much smaller than the group order of the proof system, but this requires

additional L∞ proofs and non-trivial changes for the Schwartz-Zippel compressing technique.

65

Input length ℓ approx. 210 211 212 213 214

Packed sharing in Armadillo (ms) 29.67 29.67 29.67 29.67 29.67
Feldman in ACORN (ms) 90.32 90.32 90.32 90.32 90.32

Masking in Armadillo (ms) 0.26 0.49 1.13 2.01 4.07
Masking in ACORN (ms) 1.69 3.81 9.41 15.53 31.45

Commitment (ms) 16.98 18.28 21.35 27.18 39.02
- commit to s 1.31 1.31 1.31 1.31 1.31
- commit to e 1.99 2.93 5.25 9.72 18.53
- commit to x 1.19 1.55 2.30 3.66 6.69
- commit to shares in Armadillo 12.49 12.49 12.49 12.49 12.49
- commit to masks in ACORN 164.80 288.85 535.58 1038.54 2042.97

Proofs (sec)
- L∞ norm (§2.3.4) 1.74 2.40 4.78 7.04 14.12
- L2 norm (§2.3.4) 0.09 0.17 0.33 0.64 1.26
- enc linear (§2.3.4) 0.08 0.16 0.56 0.61 1.22
- scrape test (§2.3.4) 0.80 0.80 0.80 0.80 0.80

Figure 2.12: Computation cost per client in Armadillo and ACORN-robust [BGL+22] varying input
vector lengths.

Computation and communication

Regular client cost. We present the breakdown of a regular client’s computational cost in Figure 2.12,

varying the input length. The cost for decryptors is discussed separately later. For Armadillo, we

set the number of decryptors as 512, which is more than needed in most cases (§2.2.3): with λ = 256,

this can tolerate δD + 3ηD < 1/2 (§2.3.5).

Since our baseline ACORN-robust shares similar types of computation with Armadillo, we present

the costs for two systems jointly, dividing the process into four steps: input-independent secret

sharing, input masking, commitment generation, and proof generation.8 In each phase, we indicate

whether ACORN-robust and Armadillo perform the same or different operations: shared operations

are shown in black text, while differences are highlighted using distinct colors. Since the authors

of ACORN-robust did not implement this protocol, we estimate their client’s costs by extracting

the types of operations and counting the number of operations for each type (e.g., how many
8In ACORN-robust, each client establishes input-independent pairwise secrets with O(logn) neighbors, expands

them to O(logn) masks of input length, and performs Feldman secret sharing of the secrets. Microbenchmarks for
ACORN-robust assume 40 neighbors per client (from [BBG+20]).

66

scalar multiplication on elliptic curve), and simulating them with Rust (the same language used for

implementing ours). The constructions proving the of L2 and L∞ norms are largely identical across

both protocols.

For both ACORN-robust and Armadillo, the bulk of the computation time is spent on proof gener-

ation; the other phases take only milliseconds. Armadillo has a 1–2 second additional work for the

scrape test proof and the proof of encryption (§2.3.4), but as we show later (§2.3.7), this is a trade-

off that yields significant gains: while clients spend slightly more time, our protocol requires fewer

than one-third the number of rounds compared to theirs. Since round complexity is substantially

important for run time in a setting where clients may drop out arbitrarily (evidenced in §2.3.7),

this reduction leads to much overall performance gains that is far outweigh the effect of increased

client computation.

A final complication is that ACORN-robust has an additional cheater identification phase to remove

the effects of malicious clients from the aggregation result. Since this phase involves only sending

small stored messages to the server (Algorithm 4 in [BGL+22]) and there is no cryptographic

computation at clients, we do not depict them in Figure 2.12.

Decryptor cost. Per-decryptor cost is independent of the input length ℓ, and is linear to the number

of clients n. Each decryptor will receive n ciphertexts and n commitments, decrypts each ciphertext

and batch verify if the decryption results are consistent with the commitments.

We instantiate the public key encryption using RSA since it supports extremely simple proof of

decryption (§B.2): the decryptor reveals the decryption result to the server, and the server checks

the result using this decryptor’s public key at PKI.

For RSA cryptosystem, each ciphertext decryption takes around 1.5 ms. For 1K clients, this is only

1.5 seconds per decryptor cost. Also, the decryptor only needs to send proof of decryption to the

server for at most ηn clients.

Server cost. Armadillo’s server computation depends on both input length ℓ and the number of

67

500 1000 1500 2000
Number of Clients n

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e
(s

ec
)

210 210 210 210211 211 211 211212 212
212 212213

213
213

213
214

214

214

214

Proof verification
Decoding
Addition

Figure 2.13: Server computation in Armadillo for different number of clients (indicated via x-axis)
and different lengths of inputs (indicated on the top of bars).

clients n. Figure 2.13 breaks down the computation into aggregation (summing masked vectors and

decoding using s) and proof verification. As the number of clients increases, the proportion of time

spent on proof verification decreases due to batching optimizations.

For ACORN-robust, the server performs the same proof verification for input norms and the vector

additions as in Armadillo, and it additionally verifies Feldman commitments for every pairwise seed.

We do not report their cost for Feldman commitment verification but it could become a bottleneck:

for 1K clients with 40 neighbors each9, the server performs 402 · 1000 group exponentiations.

Simulating communication rounds

Why rounds matter. When executing an interactive protocol in the server-client setting, it is a

common strategy to fix the server’s waiting time per round and drop any clients who are late.

Typically, once a client is late, the client no longer participates in the rest of the rounds (because

it may have lost the state necessary for future rounds).

This interaction pattern exacerbates the impact of round complexity: say a protocol is theoretically
9The number of neighbors is to guarantee privacy with respect to the dropout rate and malicious rate, and 40 is

for 5% dropouts and 5% malicious clients which are the smallest rates considered in Bell et al. [BGL+22].

68

500 1000 1500 2000
Number of clients n

0
3
6
9

12
15
18
21

Ro
un

ds

ACORN, = 0.05
ACORN, = 0.10
ACORN, = 0.15
ACORN, = 0.20
Armadillo (any < 1/3)

Figure 2.14: Number of rounds in Armadillo and ACORN-robust, varying malicious rate η.

designed to tolerate 10% dropouts over all rounds of an aggregation, if this protocol has many rounds,

e.g., 20 rounds, then even 1% dropout on average per round can accumulate to 20% dropouts in

total in which case the protocol just fails, i.e., the server does not get any aggregation result.

Comparison on rounds. Figure 2.14 shows the concrete number of rounds for ACORN-robust under

different n and η based on their probabilistic analysis [BGL+22, Theorem 4.1]. For a 0.9 success

probability, ACORN-robust requires up to 21 rounds (7× of Armadillo) in the worst setting (n =

2000, η = 0.2), compared to 3 rounds for Armadillo. In the best setting when n = 500 and η = 0.05,

ACORN-robust still has 9 rounds (3× of Armadillo). Also, ACORN communicates with all clients

in every round, while Armadillo involves all clients in the first round and only decryptors in the

remaining two.

2.3.8 Related work

Multi-server setting. Disruption resistance is first considered in the context of aggregation statistics

and most relevant works focus on the multi-server setting. Their high level idea is achieving privacy

by having clients secret-share their inputs to the multiple servers, and the servers communicate to

validate the inputs. Relevant systems include [CGB17, RSWP23, ZZW24, NLT24].

Our model is a star-topology model where a single server coordinates all the communication (the

same setting as [BIK+17, BGL+22, MWA+23]), which differs fundamentally from the multi-server

model. In the multi-server setting, powerful servers can handle heavy computation, such as the

69

nℓ work for n clients and length-ℓ inputs under the secret-sharing solutions. For our star-topology

communication model, computational and communication overhead must be minimized for the

resource-constrained clients. In other words, the bottomline for client computation and commu-

nication is O(n + ℓ), and for example any protocol with nℓ work at any client is not a practical

solution under the star-topology model.

Single-server setting. Although there are many single-server secure aggregation protocols [BIK+17,

BBG+20, SHY+22, SSV+22, MWA+23, GPS+22, LLPT23, KP24, BCGL+24], most of them do

not provide disruption resistance. A few prior works [LBV+23, BGL+22] achieves a weaker notion

of disruption resistance: disruption can be detected, but the server cannot reconstruct the sum

result if there is an disruption. ACORN-robust [BGL+22] has only polylog(n) work per client, but

requires a probabilistic cheater identification mechanism that requires O(log n) rounds. A recent

work by Alon et al. [ANOS24] shows that any function can be securely computed with polylog(n)

work per client and poly(n) work at the server, with polylog(n) rounds, assuming fully homomorphic

encryption exists.

Our protocol (and [BGL+22, MWA+23]) works by each client sending its masked input of length ℓ to

the server; then in the rest of the steps, the clients do computation independent of ℓ to decryptor the

server unmask the sum. To compare, ACORN-robust has each client communicate with polylog(n)

other clients where each of them doing polylog(n) work; Armadillo has each client communicate to

a set of polylog(n) clients where the latter does linear work in n. In practice, n is smaller than input

size ℓ so that the input size will dominate the client cost.

2.4 Comparison, discussion and limitations

Figure 2.15 provides a comprehensive comparison for the guarantees and efficiency of the two systems

Flamingo and Armadillo with prior secure aggregation protocols. Below we discuss some extensions

and limitations.

Computing aggregate statistics. We have focused on computing sums, but we can also compute other

functions such as max/min using affine aggregatable encodings [BGI+14, CGB17, HIKR23].

70

Client comm. Client comp. Server comm. Server comp. Rounds Robustness Input Val.

Effiel [CGJvdM22] ℓn2 ℓn2 ℓn3 ℓn3 4 ✓ Generic

RoFL [LBV+23] ℓ+ log n ℓ log n ℓn+ n log n ℓn 6 × L2, L∞

ACORN-detect [BGL+22] ℓ+ log n ℓ log n ℓn+ n log n ℓn 7 × L2, L∞

ACORN-robust [BGL+22] ℓ+ log2 n ℓ log n+ log2 n ℓn+ n log2 n ℓn+ n log2 n 6 + log n ✓ L2, L∞

Flamingo Regular: ℓ+ C
Decryptor: n+ C

Regular: ℓ+ C
Decryptor: n+ C

ℓn+ Cn ℓn+ Cn 3 × N/A

Armadillo Regular: ℓ+ C
Decryptor: n+ C

Regular: ℓ+ C
Decryptor: n+ C

ℓn+ Cn ℓn+ Cn 3 ✓ L2, L∞

Figure 2.15: Asymptotic communication and computation cost for one training iteration, where
vector length is ℓ and number of clients per iteration is n; for simplicity, we omit the asymptotic
notation O(·) in the table. In practice we have n < ℓ (§2.2.3). The round complexity excludes any
setup that is one-time. We choose the baseline protocols that have similar properties as ours or
use a similar model as ours. For the protocols using the idea of sub-sampling clients, we denote
the number of sampled clients as C which is sublinear in n. In Flamingo, the decryptor has an
asymptotic cost slightly larger than n when dropouts happen.

Limitations. Flamingo assumes that the set of all N clients involved in a training session is fixed

before the training starts and that in each iteration t some subset St from the N clients is chosen.

This system does not naturally handle clients who dynamically join the training session. Armadillo

allows clients to join dynamically, provided the clients register their public keys in the PKI before-

hand. This is made possible because decryptor clients in Armadillo are stateless, unlike in Flamingo,

where the decryptor clients hold shares of a secret key established at the beginning of the protocol.

Another unexplored aspect of this dissertation is handling an adaptive adversary that can dynami-

cally change the set of parties that it compromises as the protocol executes. In BBGLR [BBG+20],

the adversary can be adaptive across multiple iterations of aggregations but not within one aggrega-

tion; in our systems the adversary is static across all the iterations. To our knowledge, an adversary

that can be adaptive within a single execution of aggregation has not been considered before in the

federated learning setting. It is not clear that existing approaches from other fields [GHK+21] can

be used due to different communication models.

Finally, secure aggregation reduces the leakage of individuals’ inputs in federated learning but does

not fully eliminate it. For example, the intermediate training results are leaked to the clients. It is

important to understand what information continues to leak. A few recent works in this direction

71

are as follows. Elkordy et al. [EZE+23] utilize tools from information theory to bound the leakage

with secure aggregation: they found that the amount of leakage reduces linearly with the number of

clients. Wang et al. [WXWZ23] then show a new inference attack against federated learning systems

that use secure aggregation in which they are able to obtain the proportion of different labels in the

overall training data. While the scope of this attack is very limited, it may inspire more advanced

attacks. So et al. [SAG+23] show that if the clients’ inputs remain relatively stable and there is a

significant overlap in the selected clients across iterations, then the server can infer an individual

input by observing the sums over many training iterations. To mitigate this risk, they propose a

batch partitioning strategy that groups clients into fixed batches, ensuring that a group of clients

either participate together or not at all.

Pasquini et al. [PFA22] show an attack where a malicious server can circumvent secure aggregation

by sending inconsistent models to clients. They suggest a mitigation for pairwise-masking based

protocols (like Flamingo): binding the model hash to pairwise masks, which cancel out if all clients

share the same hash. Armadillo does not rely on pairwise masking, but we can use a different ap-

proach: each client hashes the received model and sends the hash to the decryptors. The decryptors

then perform a majority vote on the hashes and exclude shares from clients whose hashes do not

match the majority.

72

CHAPTER 3

“PRIVATE PULL”: PIR IN THE SHUFFLE MODEL

3.1 Introduction

A private information retrieval (PIR) protocol [CGKS95, KO97] allows a client to fetch an entry

from a database server without revealing which entry was fetched. Specifically, the server holds a

database x = (x1, . . . , xn) consisting of n bits (or generically, n symbols over an alphabet Σ) while

the client holds an index i ∈ {1, . . . , n}; the client wishes to obtain xi while hiding i from the server.

PIR protocols have been broadly studied in two flavors—information-theoretic and computational—

they each has their own merits. Information-theoretic protocols provide security against compu-

tationally unbounded adversaries and do not require “cryptographic” computation. Unfortunately,

non-trivial information-theoretic PIR (i.e., less than n bits of communication) is impossible with

only one server [CGKS95]. Consequently, PIR protocols in this setting need database replication

across two or more non-colluding servers. This poses significant challenges for deployment: manag-

ing multiple databases is costly when they are large (e.g., data synchronization, replication cost),

and enforcing non-collusion on the databases is hard in the real world—the database servers are

often operated by a single company or organization in practice. On the other hand, computa-

tional PIR can work when only one server holds the database but only provides security against

polynomial-time adversaries due to its reliance on cryptographic hardness assumptions. Yet, the

cost of single-server computational PIR is usually high due to expensive cryptographic operations.

Indeed, existing single-server protocols [AMBFK16, ACLS18, ALP+21, MW22] are significantly

slower than the multi-server information-theoretic ones [GCM+16, GHPS22] (the only exceptions

unfortunately require relatively large storage at clients [HHCG+23, DPC23, ZSCM23]).

The shuffle model: PIR with many clients. How can we achieve the best of both worlds,

under a possibly relaxed model? Recall that single-server information-theoretic solution is not

possible in the standard model without using n bits of communication [CGKS95]. To circumvent

this barrier in the standard model, Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS06] proposed a

73

relaxed model, where many clients (which can hold arbitrary query indices) simultaneously query

a single server, but the clients are granted the ability to make anonymous queries to the server.

Abstractly, we can think of the queries as being shuffled before reaching the server. It is important

to note that the shuffling does not trivialize the PIR problem; it hides from the database who sends

which message but not the message itself.

Consider a client using a multi-server PIR query algorithm to generate sub-queries for a query

index. If these sub-queries were naively sent to a single server, the server would immediately learn

the query index of this client. However, this work and [IKOS06] show the power of shuffling: if there

are many clients and their sub-queries are randomly permuted by a shuffler before being sent to the

server, then it is hard for the server—even one that is computationally unbounded as we show in

this work—to figure out any of the client-query indices. Therefore, this single server in the shuffle

model can simply perform “cheap” operations of the multi-server PIR scheme to answer sub-queries.

Understanding the shuffle model in the context of PIR is well-motivated by real-world applications:

databases with high-volume queries, such as stock quotes and search engines, naturally enjoy the

feature that thousands of users access the database at the same time, and therefore considering PIR

with many simultaneously querying clients is sensible, particularly if it allows for lower server cost.

Note that this is a substantially different goal from batch PIR [IKOS04, Hen16] which amortizes the

cost of multiple queries from a single client (see Section 3.7). The shuffle model has been considered

also in problems orthogonal to PIR, including secure aggregation [IKOS06, BBGN20, GMPV20] and

differential privacy [BEM+17, CSU+19, EFM+20, CU21, AIVG22]. Analogously to these works, we

view shuffling as an atomic operation; existing literatures on differential privacy [BBGN20] and

anonymity [vdHLZZ15, LYK+19, APY20, DMS04, HSSN+22] discuss how to implement shuffling

efficiently (see details in Section 3.1.2).

The shuffle PIR model opens a promising direction toward constructing efficient single-server PIR

protocols. In this work, we establish the theoretical feasibility of non-trivial single-server PIR with

information-theoretic security in the shuffle model.

74

3.1.1 Summary of contributions

Information-theoretic single-server PIR in the shuffle model. We present the first con-

struction for single-server PIR in the shuffle model that has sublinear communication and information-

theoretic security (with inverse-polynomial statistical error). Moreover, our construction is also dou-

bly efficient: following one-time preprocessing on the server side, and without any state information

on the client side, the server’s per-query computation is sublinear in the database size.

Theorem 3.1.1 (Informal). For every constant 0 < γ < 1 , there exists a single-server PIR protocol

in the shuffle model such that, on database of size n, and following one-time preprocessing on the

server side, the protocol has O(nγ) per-query computation and communication, and O(n1+γ/2) server

storage. This is achieved with the following information-theoretic security guarantee: for any inverse

polynomial ϵ = 1/p1(n), there exists a polynomial p2(n) = O(n1+4/γ ·(p1(n))8) such that the protocol

has ϵ-statistical security as long as the total number of queries made by (uncorrupted) clients is at

least p2(n).

As a key technique, we describe a generic inner-outer paradigm that composes together two standard

(multi-server) PIR protocols: an outer and an inner layer, to build a PIR protocol in the shuffle

model. Besides, our results are robust against imperfect shuffling/anonymity (Appendix C.2).

While the above protocol only achieves inverse-polynomial (rather than negligible) security error,

this is in fact the standard notion of security in several important settings, including differential

privacy [DN03, DMNS06], secure computation with partial fairness [Cle86, MNS09, GK10], and

secure computation over one-way noisy communication [AIK+21]. Our protocol demonstrates that

information-theoretic security is indeed feasible without database replication. While concrete effi-

ciency is not the focus of this work, our approach shows the unlocked efficiency for single-server PIR

in the shuffle model, and a follow-up work has pushed this direction closer to practice [GIK+24].

PIR with variable size database records. Real-world databases typically contain records in

a variety of sizes, and revealing the record size typically reveals sensitive information about the

record identity. Unfortunately, in the usual PIR setting, nothing better can be done apart from

75

padding all records to the same size and having clients retrieve the padded records; this poses an

undue communication cost if the majority of clients only wish to retrieve small records.

By considering PIR in the shuffle model, we show how the size of any individual retrieved record

can be hidden without any padding even where there are only a small number of querying clients.

In particular, we show a novel approach for splitting a record of size ℓ to be retrieved such that

the server only stores the records without padding as a database, and each client makes polylog(ℓ)

queries to this database; our construction only makes a black-box use of PIR protocols.

The problem of handling variable-sized records serves as an independent motivation for studying

the shuffle model in the context of PIR.

3.1.2 Discussion on the shuffle model

Two-way shuffling. In this work, we assume a two-way shuffler, namely not only the clients can

send messages anonymously to the server but also that the server can respond to clients without

needing to know client’s identities. This is a bit different from the differential privacy works in

the shuffle model, where shuffled messages are delivered to a server for analytics and there is no

communication back from the server to the clients. For this work, we view the two-way anonymous

communication as an ideal primitive. Below we discuss how to realize this primitive in practice.

Comparing with the classical models. PIR in the shuffle model can also be viewed as a

hybrid model between the standard single-server and multi-server PIR models: as an abstraction,

the shuffler models a second “server” which is assumed to not collude with the main database server

but does not hold a copy of the database and can only perform database-irrelevant computations.

This alone makes the shuffle model interesting for practical deployments: non-collusion between two

(or more) servers holding the same database can be difficult to enforce (since it is likely for them

to be operated by the same company for data ownership reasons) making it a strong assumption in

practice; in contrast, if only one server holds the database, then the “two” servers can be reasonably

run by independent (and possibly geographically distributed) entities. We also note that it could be

interesting to let this second database-irrelevant server perform more generic computations instead

of just acting as a shuffler; and this is explored in our follow-up works [GIK+24].

76

In practice, this two-way shuffler can be realized in a distributed way [KEB98, Cha81, DMS04,

BBGN20, BBG23]. If we wish to keep only a single entity as the shuffler, we can instantiate the

two-way channel as follows. Let (pkD, skD) be the public and secret key pair of the database server.

For each message the client wants to send to the server, it encrypts the message using a fresh

symmetric key and uses pkD to encrypt the symmetric key. The client binds the two ciphertexts

together and sends them to the shuffle server. The shuffle server learns nothing about the messages

sent to the server, and the database server can decrypt each message—first using skD, then the

symmetric key. The server then responds to each message with an answer encrypted under the

symmetric key of that message. The shuffle server permutes all the encrypted answers and forwards

them to the clients.

3.2 Preliminaries

Basic notation. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. F denotes a finite field. Sc

denotes the symmetric group containing all permutations of c elements. We use bold letters to denote

vectors (e.g., z). We use SD(D1,D2) to denote the statistical distance between the distributions D1

and D2.

Unless specified, logarithms are taken to the base 2. The notation poly(·) refers to a fixed but

unspecified polynomial in its parameter; we use polylog(·) to mean poly(log(·)). The notation Õ

hides arbitrary polylogarithmic factors, i.e., f(n) = Õ(g(n)) if f(n) = O(g(n)) · polylogn.

We use $−→ to denote uniformly random sampling, → for output by deterministic algorithms, and

$→ for output by randomized algorithms.

3.2.1 Multi-server PIR schemes

We now introduce the standard notion of multi-server information-theoretic PIR. We start with the

basic definition below.

Definition 3.2.1 (PIR). Let Σ be a finite alphabet. A k-server PIR protocol over Σ is a tuple

Φ = (Setup,Query,Answer,Recon) with the following syntax:

77

• Setup(x) → Px: a deterministic algorithm executed by all servers that takes in an n-entry

database x ∈ Σn and outputs its encoding Px.

• Query(i;n) $→ ((q1, . . . , qk), st): a randomized algorithm (parameterized by n) executed by the

client that takes in an index i ∈ [n], and outputs sub-queries q1, . . . , qk and a state st. The

sub-query qℓ is sent to the ℓ-th server.

• Answerℓ(Px, qℓ)→ aℓ: a deterministic algorithm executed by the ℓ-th server that takes in the

encoding Px and a sub-query qℓ, and outputs an answer aℓ. Since the Answer algorithm may

be different for different servers, we use ℓ to denote the algorithm used by server ℓ.

• Recon((a1, . . . , ak), st) → xi: a deterministic algorithm executed by the client that takes in

answers a1, . . . , ak (where aℓ is from the ℓ-th server) and the state st, and outputs xi ∈ Σ.

Φ needs to satisfy the following correctness and security properties:

Correctness. For all n ∈ N, any database x = (x1, . . . , xn) ∈ Σn, and all i ∈ [n],

Pr


Px ← Setup(x)

Recon((a1, . . . , ak), st) = xi : ((q1, . . . , qk), st) ←$ Query(i;n)

(a1, . . . , ak) ← (Answerℓ(Px, qℓ))
k
ℓ=1

 = 1.

Intuitively, correctness says that the client always gets the correct value of xi.

Security. For all n ∈ N, i ∈ [n], and T ⊂ [k], define the distribution

Dn(i, T) := {{qℓ}ℓ∈T : ((q1, . . . , qk), st)←$ Query(i;n)} .

We say that Φ has (t, ϵ)-privacy (where t < k, and ϵ = ϵ(n)), if for all n ∈ N, any two indices

78

i, i′ ∈ [n], and any set T ⊂ [k] such that |T | < t, we have

SD(Dn(i, T),Dn(i
′, T)) ≤ ϵ(n).

Intuitively, (t, ϵ)-privacy says that any set of less than t colluding servers has a distinguishing

advantage at most ϵ.

We now provide as background common PIR schemes that will be important later for our con-

struction for PIR in the shuffle model. The constructions employ the following general outline:

The servers encode the database x ∈ Σn as a polynomial Px. To query the database at position i,

the client first encodes i into a vector z(i) where the encoding is defined in a way that results in

Px(z
(i)) = xi. The client now evaluates Px at z(i) while hiding z(i) from the servers: it secret shares

z(i) into k shares, and each share is sent to one of the k servers (through e.g., additive or Shamir

sharing). Each server can then evaluate Px on one share and send the result to the client, who is

able to reconstruct the entry xi.

Two-server PIR with additive shares

The first construction we describe is a PIR scheme from Beimel et al. [BIK05] which uses two

non-colluding servers. Figure 3.2.1 contains the full description.

Setup. Consider a field F within which Σ can be encoded. The Setup algorithm encodes a database

x ∈ Σn into an m-variate polynomial Px ∈ F[Z1, . . . , Zm] as follows. First, choose m and d < m such

that
(
m
d

)
≥ n, and let M = (M1, . . .Mn) denote a list of n monomials in the variables Z1, . . . , Zm

with total degree exactly d and the degree of each variable at most 1. For simplicity, we pick the

first n such monomials in lexicographic order of the variable indices (e.g., Z1Z2Z3 appears before

Z1Z2Z4). The encoding Px is now simply the linear combination Px =
∑n

i=1 xiMi.10

Query . The Query algorithm starts by encoding the query index i ∈ [n] into a binary vector

z(i) = (z
(i)
1 , . . . , z

(i)
m) ∈ {0, 1}m defined such that each z

(i)
j = 1 if and only if the monomial Mi

10One can choose a more complicated encoding in [BIK05] (E1 encoding scheme) that allows better parameters,
namely

∑d
ℓ=0

(
m
ℓ

)
≥ n.

79

contains the variable Zj . Observe here that the Hamming weight of z(i) is d since the monomials

are also of degree d. Such encoding ensures that Px(zi) = xi. Then the sub-queries are generated

by splitting z(i) into two additive shares z
(i)
1 = (z

(i)
1,1, . . . , z

(i)
m,1) and z

(i)
2 = (z

(i)
1,2, . . . , z

(i)
m,2), i.e.,

z(i) = z
(i)
1 + z

(i)
2 . Here, z(i)ℓ is sent to the ℓ-th server for ℓ = 1, 2.

Answer . The Answerℓ algorithm run by the servers first views the database encoding Px as a

2m-variate polynomial P ′
x defined as:

P ′
x(Z1,1, Z1,2, . . . , Zm,1, Zm,2) = Px(Z1,1 + Z1,2, . . . , Zm,1 + Zm,2).

Now, the ℓth server selects all the monomial terms in P ′
x such that the number of Z_,ℓ (i.e., the

variables where the second subscript is ℓ) is at least half of the variables in that term (in the exactly

half case, the monomials are split between the two servers in a pre-determined way). Note that the

total number of monomials in P ′
x is 2d · n, so there should be 2d−1 · n monomials for each server.

The ℓ-th server then evaluates its selected monomials at the point z
(i)
ℓ and responds with the sum

as the answer aℓ (which is now a polynomial in the remaining m variables). Further, observe that

each monomial in P ′
x is of degree d, and so after the server evaluation, the answer polynomial aℓ

will be of degree at most d/2.

Reconstruction. Finally, given answer polynomials a1, a2, the client evaluates a1 at z
(i)
2 and a2 at

z
(i)
1 , and sums up the evaluation results in F to get Px(z

(i)) = xi.

Cost. The parameters m and d can be chosen to be both Θ(log n) such that
(
m
d

)
≥ n. In this

case, the query size is O(log n) (since m elements in F2 are sent to each server) and the answer size

is O(
√
n) (since specifying an m-variate polynomial of degree d/2 requires

(
m
d/2

)
= O(

√
n) terms).

k-server PIR with additive shares

The above protocol can also be generalized to k servers where the encoding z is now split into k

additive shares. In this case, the servers express the m-variate degree-d polynomial Px as km-variate

80

Let x be a database with size n and F be a field, where each entry xi is in Σ = F.

• PIR.Setup(x)→ P :
1. Choose m, d such that

(
m
d

)
≥ n.

2. Let M = (M1, . . . ,Mn) be a list of n monomials in F[Z1, . . . , Zm] with total degree d and intermediate
degree at most 1. Sort all monomials that have m variables with degree d by a lexicographic order
of the variables indices.

3. Compute Px =
∑n

i=1 xiMi ∈ F[Z1, . . . , Zm].
4. Compute a 2m-variate degree-d polynomial P from Px such that

P (Z1,1, Z1,2, . . . , Zm,1, Zm,2) = Px(Z1,1 + Z1,2, . . . , Zm,1 + Zm,2).
5. Output P .

• PIR.Query(i;n)→ ((q1, q2), st), where i ∈ [n]:
1. Let z = (z1, . . . , zm) be the i-th binary vector such that zj = 1 if and only if the monomial Mi

contains the variable Zj .

2. Let z1
$←− Fm

2 , z2 ← z− z1; and let qℓ ← zℓ for ℓ = 1, 2. Set st = (z1, z2).
3. Output ((q1, q2), st).

• PIR.Answerℓ(P, qℓ)→ aℓ (for ℓ = 1, 2):
1. Let {M ′

j}j∈[2mn] be all monomials where the number Z_,ℓ is at least half of the variables.
2. Output aℓ ←

∑
j∈[2mn] M

′
j(qℓ).

• PIR.Recon((a1, a2), st)→ xi:
1. Parse st as (z1, z2).
2. Compute xi ← a1(z2) + a2(z1) (note that a1 and a2 are polynomials).
3. Output xi.

Construction 3.2.1: A two-server information-theoretic PIR [BIK05].

degree-d polynomial P ′
x. That is,

P ′
x(Z1,1, . . . , Z1,k, . . . , Zm,1, . . . , Zm,k) = Px(Z1,1 + . . .+ Z1,k, . . . , Zm,1 + Zm,k).

Let Zℓ be the set of monomials such that for each monomial, there are more Z_,ℓ than Z_,ℓ′ for

any ℓ′ ̸= ℓ. The set Zℓ is assigned to the ℓ-th server. Moreover, the monomials in P ′
x but not in

any of Z_,ℓ’s will be divided to k servers in a pre-determined way. To issue a query for index i, the

client encodes it as before to a binary string z ∈ Fm
2 , and then splits it to k additive shares over

Fm
2 , denoted as z1, . . . , zk. The client sends to the ℓ-th server the share zℓ, and the server evaluates

the assigned monomials using zℓ. The evaluation result is a polynomial of degree (k − 1)d/k; this

implies the answer size (which dominates the communication cost) is O(n(k−1)/k).

Observe that using more additive shares gives worse efficiency but better privacy (since collusion

81

between any k − 1 servers can be tolerated). Efficiency can be significantly improved to O(n1/k)

using CNF shares [ISN87] (instead of additive shares) where each server is now given a different

(k − 1)-sized subset of the additive shares. This is because the evaluation of Px at k − 1 shares

results in an answer polynomial of degree at most O(n1/k). The efficiency gain, however, comes at

the cost of much stronger non-collusion assumption for PIR, namely that no two database servers

can collude. Looking ahead, an interesting consequence of using the shuffle model is that our CNF-

sharing based construction (Section 3.5.3) can significantly reduce communication without making

any non-collusion assumptions on database servers (since there is only one database).

For simplicity, going forward, we will refer to the k-server PIR with additive shares as k-additive

PIR and its CNF-variant as k-CNF PIR; we describe this in Figure 3.2.2.

k-server PIR with Shamir shares

In this section, we describe the k-server t-private PIR that uses Shamir secret sharing from [BIK05].

Full description is provided in Figure 3.2.3. We also call this the Reed-Muller PIR as it is closely

related to Reed-Muller code.

Setup. Consider a field F within which Σ can be encoded. The Setup algorithm encodes a database

x ∈ Σn into a polynomial Px ∈ F[Z1, . . . , Zm] as follows: First, choose m and d such that
(
m+d
d

)
≥ n

and |F| > k > td (typically m, d, t are chosen first and then k and the field size |F| are deteremined

accordingly). Let α0, . . . , αd be distinct elements in F (note that d < |F|). The index i is encoded

to the i-th vector z(i) of the form (αλ1 , . . . , αλm) ∈ Fm where
∑m

j=1 λj ≤ d. There exists a set of

polynomials P (i)(z1, . . . , zm) of degree at most d such that P (i)(z(i)) = 1 and P (i)(z(j)) = 0 for all

i, j ∈ [n] and i ̸= j. The full details of this encoding and the construction of P (i)’s are provided

in [BIK05, Appendix B].

Query. To generate the sub-queries, after encoding the index i to z(i), the client first chooses m

univariate polynomials (R1, . . . , Rm) = R each of degree t such that R(0) = (R1(0), . . . , Rm(0)) =

z(i). It then randomly picks r1, . . . , rk ∈ F and computes the sub-query to be sent to the ℓth server

as qℓ = R(rℓ) ∈ Fm.

82

Let x be a database with size n, each entry xi is in Σ = F. There are s non-colluding servers.

• PIR.Setup(x)→ P :
1. Choose m, d such that

(
m
d

)
≥ n.

2. Let M = (M1, . . . ,Mn) be a list of n monomials in F[Z1, . . . , Zm] with total degree exactly d and
intermediate degree at most 1. Sort all monomials that have m variables with degree d by a lexico-
graphic order of the variables indices.

3. Compute Px =
∑n

i=1 xiMi ∈ F[Z1, . . . , Zm].
4. Compute a sm-variate degree-d polynomial P from Px such that

P (Z1,1, . . . , Z1,s, . . . , Zm,1 . . . Zm,s) = Px(Z1,1 + . . .+ Z1,s, . . . , Zm,1 + . . .+ Zm,s).
5. Output P .

• PIR.Query(i;n)→ ((q1, . . . , qs), st), where i ∈ [n]:
1. Let z = (z1, . . . , zm) be the i-th binary vector such that zj = 1 if and only if the monomial Mi

contains the variable Zj .

2. Let z1, . . . , zs−1
$←− Fm

2 and zs ← z−
∑s−1

j=1 zj .
3. Let qℓ ← (zℓ+1, . . . , zs, z1, . . . , zℓ−1) for ℓ ∈ [s]. // cyclic shift
4. Set st = (z1, . . . , zs).
5. Output ((q1, . . . , qs), st).

• PIR.Answerℓ(P, qℓ)→ a, for ℓ ∈ [s]:
1. Let {M ′

j}j∈[smn] be all monomials pre-determined
such that the number of Z_,ℓ is at most 1/s fraction.

2. Output a←
∑

j∈[sdn] M
′
j(qℓ).

• PIR.Recon((a1, . . . , aℓ), st)→ xi:
1. Parse st as (z1, . . . , zs).
2. Compute xi ←

∑
ℓ∈[s] aℓ(z1, . . . , zℓ − 1, zℓ+1, zs).

3. Output xi.

Construction 3.2.2: An s-server PIR with CNF shares [BIK05]. Note that when s = 2, this is simply
the 2-server additive PIR.

Answer. The Answerℓ algorithm evaluates Px at qℓ and sends back aℓ = Px(qℓ). Note that the

answer algorithm for this protocol is the same for all k servers.

Reconstruction. Finally, the Recon algorithm uses Lagrange interpolation on the points (r1, a1), . . .,

(rk, ak) to compute a degree td polynomial S = Px ◦ R; the evaluation S(0) will give the desired

database entry xi. This interpolation is possible when k > td and |F| > k.

Other notation. For a PIR protocol Φ, we use EΦ to denote the encoding space of all indices.

We use QΦ to denote the space of all possible sub-queries (note that QΦ may not equal EΦ). For

example, in the two-server construction above, EΦ contains all binary strings with Hamming weight

83

Let x = (x1, . . . , xn) ∈ Fn be a database.

PIR.Setup(x)→ Px:
1. Choose parameters m, d, k, t such that(

m+d
d

)
≥ n and |F| > k > td.

2. Compute Px =
∑n

i=1 xiP
(i)(z1, . . . , zm), where P (i)(PIR.Enc(i)) = 1 and P (i)(PIR.Enc(j)) = 0

for all i, j ∈ [n] and i ̸= j.
3. Output Px.

PIR.Query(i;n)→ ((q1, . . . , qk), st), where i ∈ [n]:
1. Run PIR.Enc(i) and gets z ∈ Fm.
2. Choose a set of degree-t random polynomials R = (R1, . . . , Rm) such that R(0) = z.
3. For ℓ ∈ [k]:

– Randomly choose rℓ from F.
– Set qℓ ← Q(rℓ). Note that each qℓ ∈ Fm.

4. Set st = (r1, . . . , rk).
5. Output ((q1, . . . , qk), st).

PIR.Answer(Px, q)→ a:
1. Compute a← Px(a).
2. Output a.

PIR.Recon((a1, . . . , ak), st)→ xi:
1. Parse st = (r1, . . . , rk).
2. Interpolate a degree-td univariate polynomial R ◦ Px from {(rℓ, aℓ)}kℓ=1.
3. Output xi ← (R ◦ Px)(0).

Construction 3.2.3: A k-server t-private PIR based on Reed-Muller code [BIK05].

d, and the space QΦ is Fm
2 , i.e, in this case EΦ ⊂ QΦ.

3.2.2 Balls and bins

We formulate the core analysis of our constructions using the widely-used balls-and-bins problem,

which we provide background and notation for here. Abstractly, the balls-and-bins problem analyzes

the distribution of B (identical) balls thrown into N bins according to some distribution D (often

independent and uniformly at random). To denote a final configuration of balls, we use a N -

length vector u = (u0, . . . , uN−1) where ui denotes the number of balls in bin i. We say that

u = (u0, . . . , uN−1) is (B,N)-valid if each ui ∈ Z≥0 and
∑

i ui = B. Since our analysis often

deals with sharing over a group G, we may also label the bins using elements from G; when G is

unspecified, it is taken to be ZN . In particular, we define the following:

84

Definition 3.2.2 (Valid configuration). We say that a vector u = (u0, . . . , uN−1) is a valid (B,N)

balls-and-bins configuration, or simply that u is (B,N)-valid if each ui ∈ Z≥0 and
∑

i ui = B.

Definition 3.2.3. Given (B,N)-valid configurations u = (u0, . . . , uN−1) and v = (v0, . . . , vN−1),

we define the following useful terms:

• The edit distance, denoted by ED(u,v) is defined as ED(u,v) = 1
2

∑N−1
i=0 |ui − vi|.

Intuitively, this denotes the number of balls that need to be moved to convert u to v. Note

that the distance is symmetric since ED(u,v) = ED(v,u). The edit distance between two

distributions U and V, denoted by ED(U ,V); can now be defined as Eu∼U ,v∼V [ED(u,v)].

• The ball-intersection u ⊓ v is defined as (c0, . . . , cN−1) where each ci = min(ui, vi).

• The ball-difference u⊖ v is defined as (u′0, . . . , u
′
N−1) where each u′i = max(0, ui − vi).

3.2.3 The “split and mix” technique

A core idea in our construction follows from an ingenious split-and-mix approach for secure sum-

mation by Ishai et al. [IKOS06]. Specifically, they give a one-round single-server secure aggregation

protocol as follows: Each client splits its input into k additive shares; then, as part of the shuffle

model, these shares from all the C clients are mixed together before being sent to the aggregation

server who simply outputs the sum of all the shares. The security goal here is that server cannot

infer anything about a particular client’s input. More precisely, the shuffled shares of any two tuples

of client inputs (with equal sum) should look indistinguishable. Ishai et al. [IKOS06] show that sta-

tistical security of 2−σ can be achieved by using per-input k = Θ(logC + log p+ σ) additive shares

over a group of size p. Recent works [BBGN20, GMPV20] improve this bound to k = ⌈2+ 2σ+log2(p)
log2(C) ⌉

and show that at least 4 shares are necessary.

In our shuffle PIR context, we find that 2 additive shares are sufficient due to our query random-

ization technique and the usage of additional noise queries; this cannot be done in the summation

setting as the final output could change. Towards reducing the communication of our PIR protocol,

we also generalize the split-and-mix approach to CNF shares.

85

3.3 Definitions: PIR in the shuffle model

We now formally define single-server PIR in the shuffle model. The setting here is to consider

a single server but many query-making clients while still retaining information-theoretic security.

Importantly, we do not assume any coordination among clients.

Definition 3.3.1 (PIR in the shuffle model). Let Σ be a finite alphabet. A (single-server) PIR

protocol (over Σ) in the shuffle model is a tuple ShPIR = (Setup,Query,Answer,Recon) with a syntax

similar to that of a k-server PIR (Definition 3.2.1) except for a few key changes. In particular:

• Setup(x) → Px: a deterministic algorithm executed by the server that takes in an n-entry

database x ∈ Σn and outputs its encoding Px.

• Answer(Px, qℓ) → aℓ: a deterministic algorithm executed by the server that takes in the

encoding Px and a sub-query qℓ, and outputs an answer aℓ. Unlike in Definition 3.2.1, there

is a single Answer algorithm.

• Recon(a1, . . . , ak)→ xi: a deterministic algorithm executed by the client that takes in answers

a1, . . . , ak, where for all ℓ ∈ [k], aℓ is the answer to the client’s sub-query qℓ; and outputs

xi ∈ Σ.

ShPIR needs to satisfy the following correctness property:

Correctness. For all n ∈ N, database x = (x1, . . . , xn) ∈ Σn, and i ∈ [n],

Pr


Px ← Setup(x)

Recon(a1, . . . , ak) = xi : (q1, . . . , qk) ←$ Query(i;n)

(a1, . . . , ak) ← (Answer(Px, qℓ))
k
ℓ=1

 = 1.

ShPIR also needs to satisfy the following security property in the model where client queries are

shuffled before being sent to the server.

86

Security. We will parameterize security by a shuffler Π and a minimum number of honest client

queries C. Formally, let Π = {Πc}c∈N be an ensemble such that Πc is a distribution over the

symmetric group Sc. When Π is unspecified, we assume that each Πc is a uniform distribution over

Sc; we refer to this as the uniform or perfect shuffler. We discuss imperfect shufflers in Appendix C.2.

For a given n, Π, and C, and given a tuple I = (i1, . . . , iC) ∈ [n]C of client query indices, define the

distribution

D̃n,Π,C(I) =



(q
(1)
1 , . . . , q

(1)
k) ←$ Query(i1;n)

· · ·

π(q) : (q
(C)
1 , . . . , q

(C)
k) ←$ Query(iC ;n)

q← (q
(1)
1 , . . . , q

(1)
k , . . . , q

(C)
1 , . . . , q

(C)
k)

π
$←− ΠkC


.

Then, we say that ShPIR is (Π, C, ϵ)-secure if for every n ∈ N and all C∗ ≥ C(n), and I, I ′ ∈ [n]C
∗ ,

it holds that:

SD(D̃n,Π,C∗(I), D̃n,Π,C∗(I ′)) ≤ ϵ(n).

Remark 5 (Randomized number of sub-queries). While Definition 3.3.1 considers a fixed number of

sub-queries k, an interesting consequence of using the shuffle model is that it can support a variable

k that is a randomized function of n. In the PIR construction, we will only use a fixed k in our

main constructions. A variable k turns out to be useful for our analysis into PIR protocols that

support variable sized records (see Section 3.6 for details).

Remark 6 (Number of queries v.s. number of clients). We allow clients to make multiple queries;

since the queries are anonymous, the server cannot tell whether they are from the same client, and

hence the security of PIR in the shuffle model actually relies only on the total number of queries,

rather than the number of clients. Also, if we require some lower bound on the number of queries,

we can let the clients (a given number of them) simply add more dummy queries for arbitrary indices

to reach the bound. In formal statements we will always refer to the total number of queries, but

87

for ease of presentation, we may often implicitly assume that there are C clients that each make a

single query.

Remark 7 (Adversarial clients). Our model also tolerates adversarial clients who collude with the

server. As an extreme example, it is easy to see that if C − 1 clients collude with the server, then

we are essentially back in the standard single-client setting.

Looking ahead though, our constructions will require a minimum number of honest client queries

for security. If this is met, security is not reduced by any additional adversarial clients—even an

unbounded number of them. Therefore, for simplicity, we can ignore these extra adversarial clients

within our analysis.

Efficiency metrics. We measure the efficiency of PIR constructions in the shuffle model using a

few metrics below. Since we consider many clients querying the server, we will characterize the cost

per query.

• Per-query (server) computation: for answering each query, the number of bits that the server

reads from the database and the preprocessing bits.

• Per-query communication: the sizes of the client query and the server response.

• Server storage: the total number of bits, including the preprocessing bits, that are stored by

the server.

• Message complexity : for each query, the number of anonymous messages required to send. This

is separately considered from the communication cost, since we need to take into account the

anonymity cost. In particular, this will help us delineate between, e.g., sending one anonymous

message of size s and sending s anonymous messages each of size 1 (since the latter may have

more network overhead).

While our main focus is the server and the anonymity cost, we may also consider per-query client

computation, which is the computational complexity for issuing each query and reconstructing the

answer. One may also consider client storage which is omitted in this work as the clients in our

88

constructions are stateless.

3.4 Technical overview

In this section, we present a toy protocol, which is insecure but conveys our core ideas; we then

outline the techniques for building our eventual protocol from the toy protocol.

An insecure toy protocol. The starting point is the classic two-server information-theoretic PIR

scheme by Beimel et al. [BIK05]. In this scheme, a client first deterministically encodes its queried

index i ∈ [n] to a bit string z of length m = O(log n) (we call z the encoding of queried index, or

simply query), and splits z to two additive shares in Fm
2 , z1 and z2 (we call them sub-queries), and

then sends them to the two servers respectively.

We construct PIR in the shuffle model based on this protocol. Abstractly, each client generates

two sub-queries (or shares) z1 and z2 as if it was querying using the above two-server scheme but

in fact sends both sub-queries to a single server through an anonymous channel (which shuffles the

sub-queries together with that from many other clients). Observe that this is exactly an instance of

secure aggregation in the split-and-mix approach [IKOS06, BBGN20, GMPV20], where each input

is split into two shares; the hope is that the server would learn nothing given the shuffled encoding

shares from many clients.

There are two issues with this toy protocol. The first issue is obvious—the server learns the sum of

all the encoding strings, and therefore can easily distinguish two sets of query indices by comparing

the sum of their shares and the sum of their encodings. Note that leaking the sum to the server

is exactly the goal of secure aggregation, but the sum should not be leaked in the PIR context.

This leakage can be easily eliminated by letting one of the clients add a dummy share (a random

string) to hide the sum. The second issue is more involved. In fact, splitting each input into

only two shares is not enough to guarantee security; this can be demonstrated through a simple

counter-example: suppose that the server wishes to distinguish between the 2-additive shares of

zeros and that of ones (sharing over F2) . In the latter case, there is always an equal number of

ones and zeros in the shares, while this is not true for the former case. This approach can be

generalized to a “counting” based strategy (for sharing over any Abelian groups) and allows for

89

generic efficient distinguishing attacks [IKLM24]. While splitting into more additive shares, e.g., 4,

is sufficient [BBGN20], this means we need a 4-server PIR (that has additive sub-queries) and thus

leads to worse communication—O(n3/4) in the 4-server scheme compared to O(n1/2) in the two-

server scheme (Section 3.2). On the road map to our general protocol with O(nγ) communication

(for any γ > 0), the first checkpoint is to bypass the above attack and achieve a protocol with

O(n1/2) communication; it turns out that the key ideas used for this also play a pivotal role in our

final protocol design.

Randomizing inputs via the inner-outer paradigm. The core reason why the simple split-

and-mix approach does not work with two additive shares is the presence of arbitrary correlation

among the queries; indeed, if all queries were independent and uniformly random, then using two

shares works perfectly. Our key insight to navigate around this is to randomize the queries using

another PIR, resulting in uniform random but pairwise independent queries which is later shown to

be sufficient for security.

Our construction employs a novel approach—the inner-outer paradigm, which composes a k-server

PIR protocol as an outer layer with the previous 2-server PIR protocol (with 2-additive shares) as

the inner layer. At a high level, the outer layer PIR randomizes the client queries before they get

processed through the inner layer PIR. Below we call the outer layer protocol as OPIR and the inner

layer protocol as IPIR.

Formally, the composition works as follows: for any database x ∈ {0, 1}n, on input an arbitrary

query index i ∈ [n], the client first runs the OPIR query algorithm to generate k queries q1, . . . , qk;

note that they naturally satisfy pairwise independence and each is uniformly random in the OPIR

query space Q, simply because of the security property of any PIR. Instead of sending them directly

to the server, these queries are interpreted as indices to a new database x′ of size |Q|, where x′

consists of the answers to all the possible OPIR queries (i.e., elements in Q). Now the client runs

IPIR query algorithm on the each of the k “indices” in {1, 2, . . . , |Q|}, and sends the IPIR sub-queries

to the server. Specifically, the client maps an index to its encoding in the two-server protocol, and

splits the encoding into 2 additive shares (sub-queries) in Fm
2 where m = O(log |Q|). Finally, to

90

have the compilation work, the server needs to build the database x′ for IPIR in advance, which is

feasible as long as |Q| is polynomial in n.

The upshot of this compilation is that the server now sees a set of shuffled shares generated from

uniformly random and pairwise independent query indices to the database x′. As we shall show

next, this randomization achieves that, for any two multi-sets of queried indices I, I ′ with distance

at most δ, the resulting multi-sets after processing through OPIR will be J, J ′ will have distance

in expectation
√
δ, even though J, J ′ are larger than I, I ′. The distance further decreases to 4

√
δ

after processing through IPIR (additive sharing). We will show that having each client add only one

random noise sub-query (on top of its real sub-queries) is sufficient to hide the 4
√
δ distance from

the server.

Analyzing split-and-mix with pairwise independence. We now prove that the split-and-

mix approach is sufficient once we have pairwise independent queries from the OPIR; we will use a

ball-and-bins formulation for this analysis. The full details are given in Section 3.5.1.

Concretely, consider two arbitrary sets of client queries I and I ′. Recall that each client query is

first split into k uniformly random and pairwise-independent OPIR sub-queries; this is followed by

2-additive IPIR sharing, where each OPIR sub-query is further additively split into 2 shares in the

IPIR space. Observe now that the OPIR queries of all clients can be viewed as throwing kC balls

into |Q| bins where C is the number of clients and Q is the OPIR query space. Let Y(I) denote

the distribution of the balls-and-bins configuration (i.e., a vector of random variables denoting the

number of balls in each bin) of the OPIR sub-queries resultant from I. Next, given some configuration

y ∼ Y(I), observe further that the 2-additive IPIR sharing can be viewed as creating a new, balls-

and-bins configuration ỹ (now with 2kC balls), where each previous ball is now split into two balls;

in particular, a ball in bin b within y results in two balls in random bins u and b− u (where the bin

labels are viewed as the additive group given by the IPIR query space). Denote the distribution of

this new configuration by Ỹ(I). Roughly, the goal now is to prove that for arbitrary I and I ′, we can

bound SD(Ỹ(I), Ỹ(I ′)) with some inverse polynomial in the number of clients C. This would imply

that for an appropriately large C = poly(n), a server even with unbounded computation cannot

91

distinguish between two arbitrary sets of client PIR queries, except with probability that is inverse

polynomial in n.

Looking ahead however, we will require some extra “noise” balls to be added uniformly at random,

essentially to “smooth out” the distribution of ỹ; in the PIR context, this corresponds to client

sending an additional random IPIR share. Denote the balls-and-bins distribution of the shares with

noise added as Ỹ∗(I). Our proof proceeds in the following three major steps:

For our first proof step, we focus on the OPIR and bound the expected distance in the balls-and-bins

configuration for any two Y(I) and Y(I ′)—intuitively, the distance here captures how many balls

must be moved in one configuration to make it identical to the other. We show (Lemma 3.5.2),

that the expected distance between the two configurations is bounded by
√
kC · |Q| /2. In other

words, although I and I ′ can differ in the queries of all C clients, the expected distance between

their OPIR queries is proportional to
√
C.

Now, for our second proof step, we analyze the additive splitting which takes place through the IPIR.

Consider, in particular, two configurations y1 and y2 for the OPIR sub-queries. First, we show that

it is sufficient to look only at the places where y1 and y2 differ in the context of the final statistical

distance (see Lemma C.3.1); this allows us to on expectation, focus only on roughly
√
C balls from

the OPIR configurations when we later look at the IPIR sharing. We now show that when y1 and

y2 have distance δ, post additive-sharing in the IPIR , the distance between the corresponding ỹ1

and ỹ2 reduces to Θ(
√
δ) (see Lemma C.3.2). Consequently, combining this with the first proof step

implies that any sets of original client indices, once put through both the OPIR and IPIR, will have

distance on expectation proportional to 4
√
C.

The third and final proof step now shows that adding just 1 noise query per client results in being

able to “hide” this 4
√
C difference in order to get 1/poly(n) security; adding more noise queries

improves the asymptotic bound on the number of clients needed to achieve the same security level.

The analysis in this step roughly models the “toy in sand” problem—intuitively, how much “sand”

(i.e., noise balls or queries) are needed to hide which bin a “toy” ball was initially put in.

92

Combining all the steps, we can show ϵ(n) statistical security as the total number of clients C is at

least Ω(n5/ϵ8); consequently, we get can any inverse-polynomial security where C is also polynomial

in n. The (per-client) communication complexity for this construction is O(n1/2).

Improving communication using CNF-shares. Following this, in Section 3.5.3, we show how

a CNF-sharing based construction can be used as the IPIR to reduce the communication complexity;

in particular, using an s-CNF sharing allows us to reduce the communication cost to O(n1/s) given

Ω(n2s+1/ϵ8) clients for statistical security ϵ. This cleanly generalizes our earlier construction.

The security proof follows a similar outline as before but is somewhat more involved. We find a

nice group theoretic formulation of the problem of understanding the symmetries within the CNF-

sharing, which allows us to greatly simplify the analysis by leveraging simple results from that

domain.

Impossibility results When considering PIR with multiple clients, it is useful to study the min-

imum number of clients required for security. After all, if we have a single client, then under

the statistical security notion, this effectively means the client has Θ(n) communication. In Ap-

pendix C.1, we show that for any linear PIR (i.e., its encoding function is linear), which includes the

constructions mentioned in Section 3.2 and others [BIK05, CGKS95], the number of clients required

is at least the database size. Theorem C.1.1 shows that no linear PIR protocol in the shuffle model

has statistical security better than n−C
n−1 for C < n.

3.5 A generic construction paradigm

We now present generic ways to build asymptotically efficient PIR protocols in the shuffle model

from the PIR constructions mentioned in Section 3.2. The high-level idea is to compose together a

protocol OPIR at the outer layer with a protocol IPIR at the inner layer, for randomizing the query

indices. We call this inner-outer paradigm for constructing ShPIR protocols.

3.5.1 The main theorem

We start with our generic composition which uses an IPIR with two additive shares. Our main

security result for this composition is given as Theorem 3.5.1. We provide an overview of the core

93

proof techniques in this section; the full proof is given in Appendix C.3.

Theorem 3.5.1 (ShPIR Composition Theorem for additive IPIR). Let Φ be any k-server t-private

information-theoretic PIR scheme where k > t > 2; denote its sub-query space size by Q and its

answer size by A. Let Ψ be 2-additive PIR defined in Construction 3.2.1. Then, for any database size

n ∈ N, given any ϵ > 0, there exists a constant c0 such that for C ≥ (c0Q
5)/(kϵ8), the construction

ShPIR(Φ,Ψ) is a (Π, C, ϵ)-secure PIR in the shuffle model where Π is uniform. Here, Q, k, ϵ, C

may all be functions of n. Furthermore, when Q = Õ(n) and assuming one-time preprocessing, the

construction has:

• per-query server computation O(A · k
3
2 ·Q

1
2),

• per-query client computation O(A · k ·Q
1
2),

• per-query communication O(A · k
3
2 ·Q

1
2),

• server storage Õ(A · k
3
2 ·Q

3
2).

Remark 8. In Theorem 3.5.1, we use C to implicitly mean the total number of queries from all

uncorrupted clients. Furthermore, for any n-bit database, when ϵ is 1/p1(n) for some polynomial

p1, C can be chosen as a polynomial p2(n) = c0(Q(n))5(p1(n))
8/k(n) for some constant c0. If C is

exponentially large, we can get exponential security.

Remark 9 (Answering IPIR sub-queries). Recall that in the 2-additive PIR protocol (Figure 3.2.1),

the servers respond to a client’s sub-query knowing which server it acts for: after encoding the

database as a 2m-variate polynomial P ′
x containing a setM of monomials, the first server evaluates

only those monomials from a fixed setM1 at the client sub-query, while the second server evaluates

monomials from the setM2 =M\M1. This means that it must be known to the servers whether

they are the “first” or “second” server in the protocol. Consequently, when compiling this as the

inner layer of our ShPIR construction, since there is only one server, it needs to figure out which

shares to evaluate usingM1 and which usingM2.

One idea is to have the client label the shares; this significantly complicates the analysis since there

94

ShPIR Composition. A shuffle model PIR protocol ShPIR(OPIR, IPIR) built using the inner-outer paradigm from a
k-server OPIR, and a s-server IPIR is defined as follows:

• ShPIR.Setup(x)→ P :
1. Let Px ← OPIR.Setup(x).
2. Define a database x′ of size n′ as follows:

– Let n∗ = |QOPIR| and let L = (L1, . . . , Ln∗) denote the sorting of the sub-query space QOPIR.
– If the Answer algorithm is the same for all OPIR servers:

For all i ∈ [n∗], let x′
i ← OPIR.Answer(Px, Li).

As a result, x′ is of size n′ = n∗.
– If the Answer algorithm is different for the k OPIR servers:

For i ∈ [n∗], ℓ ∈ [k]: let x′
i+n′·(ℓ−1) ← OPIR.Answerℓ(Px, Li).

As a result, x′ is of size n′ = kn∗.
3. Run IPIR.Setup(x′) and output its result as P .

• ShPIR.Query(i;n)→ (q1, . . . , qh), where i ∈ [n] and h = k(s+ 1):
1. Initialize (uℓ,j)ℓ∈[k],j∈[s].
2. Let (q′1, . . . , q

′
k)←$ OPIR.Query(i;n).

3. For ℓ ∈ [k],
– If the Answer algorithm is the same for all k OPIR servers:

Map q′ℓ to the corresponding index i′ℓ ∈ [n′],
i.e., xi′

ℓ
= OPIR.Answer(Px, q

′
ℓ).

– If the Answer algorithm is different for the k OPIR servers:
Map q′ℓ to the corresponding index i′ℓ ∈ [kn′],
i.e., xi′

ℓ
= OPIR.Answerℓ(Px, q

′
ℓ).

– Let (q̃1, . . . , q̃s)←$ IPIR.Query(i′ℓ;n
′).

– Set (uℓ,1, . . . , uℓ,s)← (q̃1, . . . , q̃s).

4. Let (r1, . . . , rk)
$←− QOPIR. // dummies

5. Output (u1,1, . . . , uk,s, r1, . . . , rk).

• ShPIR.Answer(P, q)→ a:
1. If IPIR has the same Answer algorithms for server, return a = IPIR.Answer(P, q);

otherwise return
a =

{
(IPIR.Answerℓ(P, q), label ℓ)

}
ℓ∈[s]

.

• ShPIR.Recon(a1, . . . , ah)→ xi:
1. Initialize (vℓ,j)ℓ∈[k],j∈[s] and (a′

ℓ)ℓ∈[k].
2. For ℓ ∈ [k], j ∈ [s]:

– Let a(ℓ−1)·k+j be the answer to sub-query q(ℓ−1)·k+j , namely uℓ,j .
– If IPIR has different Answer algorithms for the servers, parse a(ℓ−1)·k+j as

{(ã1, label 1), . . . , (ãs, label s)} , let vℓ,j := ãj (whose associated label is j).

– If IPIR has the same Answer algorithms for the servers, let vℓ,j = a(ℓ−1)·k+j .
3. For ℓ ∈ [k]:

– a′
ℓ ← IPIR.Recon(vℓ,1, . . . , vℓ,s).

4. Output xi ← OPIR.Recon(a′
1, . . . , a

′
k).

Construction 3.5.1: Composed ShPIR built using the inner-outer paradigm.

95

is now additional structure. Instead, we have the server answer each share twice: once according

to M1, and once according to M2 and send back the tuple as its response. Since the client knows

which was the first share and which was the second, it can pick the correct responses to be used

for reconstruction. This only results in a 2× blowup in the server communication. This is formally

showed in Figure 3.5.1.

Remark 10 (Reduced cost for homogeneous servers). For similar reason as above, if OPIR has

different Answer algorithms for the servers, the ShPIR server needs to store k sub-databases, where

for ℓ-th sub-database the server treats q ∈ QOPIR as the ℓ-th share and stores the corresponding

answers. If OPIR.Answer is the same for all k servers, then ShPIR server only needs to store one

such sub-database; as a result, both the per-query server computation and communication will be

O(A ·k ·Q
1
2), and the server storage will be O(A ·Q

3
2). The client computation will be O(A ·k ·Q

1
2).

See details in Appendix C.3.4.

3.5.2 Proof overview

Consider a client query index i ∈ [n]. Recall that our k-server OPIR will first encode i into the space

EOPIR and then split it into k sub-queries in the space QOPIR. When composing with the IPIR, these

k sub-queries will now be interpreted as IPIR query indices within the IPIR database of size |QOPIR|.

Each of the k indices will now be encoded within the IPIR encoding space EIPIR, and then split into 2

shares in the space QIPIR. Note that the space QOPIR and EIPIR have the same size, which is the size

of the IPIR database, and that EIPIR ⊂ QIPIR. Going forward, for clarity, we keep using “sub-queries”

for OPIR but use “shares” to mean the sub-queries for IPIR.

Given C clients, we will have kC total IPIR query indices encoded into EIPIR; denote this by y =

(y1, . . . , ykC) and let ỹ (of length 2kC) denote its shares in QIPIR. Our main goal is to analyze the

properties of ỹ since this will be the view of the server. In particular, given two lists of original

query indices I = (i1, . . . , iC) and I ′ = (i′1, . . . , i
′
C), and their resulting shares ỹ and ỹ′, we want to

understand whether an adversary can find e.g., which of I or I ′ corresponds to ỹ.

We now describe how to formulate our core analysis as a balls-and-bins problem. A key starting

96

observation here is that a uniformly random shuffler Π will eliminate any ordering within ỹ (and

similarly for y). In turn, this allows us to essentially do our analysis using a balls-and-bins for-

mulation, where each share in ỹ corresponds to a ball in one of |QIPIR| bins. More precisely, the

distribution of the shuffled shares in ỹ is exactly a |QIPIR|-dimensional distribution where the each

component represents the distribution of the number of balls in that bin. Towards this, we also find

it helpful to analyze y using a similar balls-and-bins formulation.

The crux of our analysis now boils down to quantifying the statistical distance between the distri-

bution of balls over bins resultant from any two sets of original query indices I and I ′. Specifically,

define Y(I) to be the distribution of the balls-and-bins configuration of IPIR query indices y resultant

from the original query indices I; define Ỹ(I) to be the distribution of its shares (i.e., corresponding

to ỹ). Roughly, the goal now is to show that for any I and I ′, we can bound SD(Ỹ(I), Ỹ(I ′)) with

some inverse polynomial in the number of clients.

Looking ahead however, for our proof to go through, we will require some extra balls to be added

uniformly at random, essentially to “smooth out” the distribution of ỹ; this can also be thought of

as uniformly random noise. In the PIR context, this effectively corresponds to each client sending

a random sub-query in QIPIR. We denote the balls-and-bins distribution of the shares with noise

added as Ỹ∗(I).

Remark 11 (Noise and communication complexity). We note that adding noise for each IPIR query

index does not increase the asymptotic communication complexity for IPIR, i.e., the communication

for an n-sized database is still O(
√
n). This is because the server will still evaluate each noise share

either as the first or second share without changing the database encoding polynomial making the

communication still O(
√
n). Note that adding noise is substantially different from splitting to more

shares, i.e., if each IPIR index was instead split into more additive shares (corresponding to using

an IPIR with more servers), then the number of variables in the encoding polynomial itself will be

larger, which would increase the asymptotic communication.

Below we describe proof of the main theorem step by step. At a high level, we leverage balls-and-

97

bins style analyses to bound the statistical distance between Ỹ∗(I) and Ỹ∗(I ′). The rough idea will

be to first compute the edit distance between the balls-and-bins configurations corresponding to the

IPIR shares and then use that to bound the statistical distance after adding the random noise. Our

proof proceeds in three major steps which we outline below.

Proof Step 1: (Analyzing the edit distance of OPIR sub-queries; Appendix C.3.1). Consider two lists

of client indices I = (i1, . . . , iC) and I ′ = (i′1, . . . , i
′
C). Abstractly, the first part of our proof shows

that the edit distance between the OPIR sub-queries generated from I and I ′ is not too large.

Recall that the t-out-of-k OPIR sub-queries generated are individually uniformly random, and are

(t − 1)-wise independent (and therefore also pairwise independent). Therefore, we can formulate

our objective as the following balls-and-bins problem given in Lemma 3.5.2.

Lemma 3.5.2. Suppose that B balls are thrown into N bins. Let B and B′ be any two distributions

of the final balls-and-bins configuration where each ball is thrown uniformly at random, and any two

balls are independently thrown. Then:

Eu∼B,v∼B′ [ED(u,v)] ≤
√

BN

2
.

Casting this result to our construction, since each client index generates k OPIR sub-queries and

there are C clients in total, the expectation of edit distance (or differences) between any two sets

of OPIR sub-queries (and consequently, the IPIR indices) is at most
√
kC |QOPIR| /2.

Proof Step 2: (Analyzing the edit distance of 2-additive sharing in the IPIR; Appendix C.3.2). Now

that we have a bound on the edit distance between OPIR sub-queries (and consequently IPIR indices),

our next step is to analyze the edit distance for shares in QIPIR. Recall that each encoded index in

EIPIR is split into two additive shares. We model this as another balls-and-bins problem below.

Consider a (B,N)-valid configuration u and let Shareu denote the distribution of randomly splitting

each ball in u (in a group G), i.e., for each ball b, throw one ball into a random bin u←$ G, and

98

another into bin b−u. The goal now is to bound the edit distance between Shareu and Sharev given

the edit distance between u and v.

To begin, we first show that in the context of the final statistical distance, it is sufficient to only

consider the parts of u and v that are different. Let Shareℓu denote the distribution of the balls-and-

bins configuration when further throwing ℓ balls independently and uniformly at random following

the sharing Shareu. In particular, we show (in Lemma C.3.1; Appendix C.3.2) that,

SD(Shareℓu, Shareℓv) ≤ SD(Shareℓu⊖v, Shareℓv⊖u)

where ⊖ denotes the ball-difference operation defined in Section 3.2.2. Essentially, this will allow us

to look at the splitting of only those balls that differ between u and v; in particular, given (B,N)-

valid u and v with edit distance δ, we will only need to concern ourselves with the (δ,N)-valid

u′ = u⊖ v and v′ = v ⊖ u. We show the following result (in Lemma C.3.2; Appendix C.3.2):

E [ED(Shareu′ , Sharev′)] ≤
√
2δN.

Combining this with the result from the first proof part, we get:

Eu∼B,v∼B′ [ED(Shareu⊖v, Sharev⊖u)] ≤
√
2N · Eu∼B,v∼B′

[√
ED(u,v)

]
≤
√
2N (BN/2)1/4 = (2)1/4B1/4(N)3/4

where the second step is by the concave Jensen’s inequality.

Proof Step 3: (Bounding the final statistical distance). We are now ready to bound the final sta-

tistical distance between the final views of the server: Ỹ∗(I) and Ỹ∗(I ′). For this, we leverage a

recent analysis by Boyle et al [BGIK22]. A straightforward corollary of their result can be abstractly

stated as follows: Consider ℓ balls thrown independently and uniformly at random into N bins and

let Uj denote the final distribution after another ball is added into bin j. Then for all bins j and

99

j′, we have SD(Uj ,Uj′) ≤
√
N/ℓ. Informally, this can also be thought of as a “toy in sand” problem

of being able to hide the location (bin j or bin j′) of an initial ball (i.e., the toy) after throwing in

N random balls as noise (i.e., the sand). The same analysis can be extended to show that if there

are ∆ initial balls, after which ℓ random balls are thrown, the statistical distance will be bounded

by ∆ ·
√

N/ℓ. In the context of our PIR analysis, intuitively, ∆ will represent the edit distance

between Shareu⊖v and Sharev⊖u, while the ℓ extra balls will represent the additional “noise” IPIR

queries made. Note that when using this balls-and-bins analysis, we need to account for the fact

that the edit distance is a distribution in our case, rather than a fixed number; it is straightforward

to do so by using standard first-moment techniques (since we have a bound on the expectation).

Casting these analyses back to our PIR context, first notice that Ỹ∗(I) is nothing but the distribution

Shareℓu∼B(I) where B(I) is the distribution of OPIR sub-queries resulting from the indices I.

Looking ahead, we will use ℓ = kC uniformly random IPIR queries (i.e., k per client) as noise. A

crucial point here is that the number of extra balls per client needs to be constant in C so that the

individual communication complexity of each client does not depend on the how many clients are

making queries. In fact, this also required our bound on the ED of the 2-additive sharing to be o(δ).

Combining the results from the previous parts, we show our main result:

SD(Ỹ∗(I), Ỹ∗(I ′)) <
3 ·N5/8

B1/8
=

3 |QIPIR|5/8

(kC)1/8
.

since N = |QIPIR| bins (query-space) and B = kC balls (total sub-queries).

A final complication is bounding |QIPIR| by Q (i.e., the size of OPIR sub-query space). We defer

the details to Appendix C.5 (Lemma C.5.1); the high-level idea is that we let each IPIR database

entry be A bits and consequently |QIPIR| can be made Õ(Q). Then, assuming that there are

C = Ω(n5+ν/k) client queries for some constant ν > 0, the statistical distance can be bounded by

some inverse polynomial 1/poly(n) in n. More specifically, suppose that we wanted to bound the

statistical distance by some inverse polynomial ϵ(n). Then, assuming at least C(n) = Ω(n5/(k · ϵ8))

client queries, the statistical distance is bounded by ϵ. Consequently, the construction satisfies

100

(Π, C, ϵ)-security in the shuffle model where Π is the uniform shuffler.

Remark 12 (Concrete trade-off between the number of clients and the amount of noise). Recall that

in the final step for bounding the statistical distance, we added kC balls in total, i.e., k independent

random noise sub-queries for each client. We can, in fact, add just one random noise for each client

and achieve the same level of security but at the cost of increasing the concrete number of clients

required by a factor of k2.

The reverse can be done as well; by adding more noise per client, say γk, the concrete number of

clients can be reduced by a factor of γ2 at the cost of increasing the communication of each client

by a factor of γ (which would be asymptotically identical when γ is a constant). This is expected

since intuitively noise sub-queries provide more randomness than arbitrary client queries.

3.5.3 Optimization

In this section, we describe how to generalize the IPIR to use CNF shares instead of additive shares.

The upshot is that it allows us to reduce the communication complexity of the resultant ShPIR

protocol to O(nc) for any constant c > 0.

Construction outline. Previously in Section 3.2.1, when looking at a standard multi-server PIR,

we mentioned how using s additive shares instead of 2 results in an increased communication cost

of O(n(s−1)/s) but this can be reduced to O(n1/s) at the cost of a stronger non-collusion assumption

using a CNF sharing where each server is given a different s− 1 sized subset of the additive shares.

We show that the same strategy in fact also works in our inner-outer paradigm by using an IPIR

with CNF-shares (the composed protocol is given in Figure 3.2.2). This compilation is particularly

interesting since it requires no extra non-collusion assumptions to get the gain in efficiency (since

the shuffle model already consists only of a single server). Instead, the trade-off will arise in the

minimum number of clients required for security.

An s-CNF IPIR can simply be used as a drop-in replacement into Construction 3.5.1 to obtain a

composed shuffle model protocol s-CNF-ShPIR. Here, upon obtaining the OPIR sub-queries, the

client splits the encoding z into s additive shares z1, . . . , zs (in a group G), and then constructs s

101

CNF shares where the i-th share is (zi+1, . . . , zs, z1, . . . , zi−1) ∈ Gs−1 (see details in Figure 3.2.2).

The CNF shares, i.e., sub-queries for IPIR, are then sent to the single server in s-CNF-ShPIR.

Theorem 3.5.3 shows the security and efficiency of this composition. We provide an outline of the

proof in this section and defer the full proof to Appendix C.4.

Theorem 3.5.3 (ShPIR Composition Theorem for CNF IPIR). Let Φ be any k-server t-private

information-theoretic PIR scheme where k > t > 2; denote its sub-query space size by Q and its

answer size by A. Let Ψ be the s-CNF PIR defined in Construction 3.2.2. Then, for any database

size n ∈ N, and given any ϵ > 0, there exists a constant c0 such that for C ≥ (c0Q
2s+1)/(kϵ8),

the construction ShPIR(Φ,Ψ) is a (Π, C, ϵ)-secure PIR in the shuffle model where Π is uniform.

Here, Q, k, ϵ, C may all be functions of n. Furthermore, when Q = Õ(n) and assuming one-time

preprocessing, the construction has:

• per-query server computation O(A · k1+1/s ·Q1/s),

• per-query client computation O(A · k ·Q1/s),

• per-query communication O(A · k1+1/s ·Q1/s),

• server storage Õ(A · k1+1/s ·Q1+1/s),

Similar to Remark 10, if OPIR.Answer is the same for all k servers, then both the per-query server

computation and communication will be O(A ·k ·Q1/s), and the server storage will be O(A ·Q1+1/s).

The client computation will be O(A · k ·Q1/s).

Proof outline. The overall structure of the proof is very similar to that of the composition theorem

for additive IPIR; the main difference being in the second proof part to analyze the balls-and-bins

distribution after the IPIR sharing which now involves CNF shares instead of additive shares.

Let s-CNF-Shareu be the distribution of the balls-and-bins configuration upon sharing each ball in

u into s CNF shares in Gs−1. Now, given (δ,N)-valid configurations u and v, we want to bound

the edit distance between s-CNF-Shareu and s-CNF-Sharev; Through a natural group theoretic

102

formulation, this turns out essentially reduce to understanding the (cyclic rotational) symmetries

of the CNF-sharing. Concretely, this allows us to show the following result (Lemma C.4.4):

ED(s-CNF-Shareu, s-CNF-Sharev) ≤ sN (s−1)/2
√
δ.

Notice that this bound nicely captures the bound on the edit distance correpsonding to Share in the

2-additive IPIR construction. Once we have this bound, the rest of the security proof of proceeds in

exactly the same way as the one for Add-ShPIR. The full proof is given in Appendix C.4.

3.5.4 Concrete instantiations

We use Theorem 3.5.3 and instantiate OPIR with concrete protocols to derive our main results. To

minimize the answer size, we use the k-server protocol with Shamir shares described in Section 3.2

(we interchangeably call it Reed-Muller code) to instantiate OPIR. To reduce the communication,

we instantiate IPIR with the s-server CNF PIR protocol in Figure 3.2.2.

Parameters. We now discuss how to pick parameters for the composed PIR scheme that results

in our main theorem. Now let OPIR be the k-server Reed-Muller PIR described in Section 3.2.1

(details in Figure 3.2.3); and IPIR be the 2-additive PIR (Section 3.2.1, Figure 3.2.1) or s-CNF

PIR (Figure 3.2.2). Note that the 2-additive PIR is a special case of s-CNF PIR. Below we give a

two-step overview of choosing parameters; Appendix C.5 gives a more fine-grained choice.

Let m, d, k, t be parameters for OPIR; recall that m is the number of variables, d is the polynomial

degree, k is the number of OPIR servers and t is the privacy threshold. Let s,m′, d′ be parameters

for IPIR, where s is the number of IPIR servers, m′ is the number of variables and d′ is the polynomial

degree.

Step 1: The IPIR database size resulting from OPIR. Recall that IPIR database size n′ depends on

the size of sub-query space of OPIR. Now we show how to pick m, d, k, t for OPIR in order to get an

Θ(n)-sized IPIR database. We first choose m, d, t; and depending on them, choose |F| and k. The

primary requirement is
(
m+d
d

)
≥ n (see details in Section 3.2). Let m and t both be constants larger

than 2, then the degree d = O(n1/m). Secondly, we require that |F| > k > td, and there exists k and

103

|F| that are O(n1/m) that makes this requirement holds. Suppose |F| = c ·n1/m for some constant c.

The space QOPIR is of size |F|m = cm ·n, and since c,m are both constant, we have |QOPIR| = Θ(n).

Let the F also be the field of database elements in IPIR (the field of OPIR), then the IPIR database

consists of n′ = Θ(n) entries with each entry of size |F| = Θ(n1/m).

Step 2: Preprocessing the IPIR database. As we mentioned in Section 3.7, the server can pre-compute

all the answers and store them as a lookup table. We now want to make the preprocessing for IPIR

possible—we need to ensure the size of sub-query space QIPIR is polynomial in n. First, from

above, there exists a constant c′ such that the IPIR database x′ has size n′ = c′ · n; and according

to Section 3.2, there exists constants c′1, c
′
2 such that choosing m′ = c′1 log n and d′ = c′2 log n can

ensure
∑d′

ℓ=0

(
m′

ℓ

)
≥ n. Since each sub-query (CNF share) in IPIR is a vector with size s−1, therefore

the size of QIPIR (i.e., the number of entries in the lookup table) is 2m′(s−1), which is nc′1(s−1). When

s is a constant, the server can pre-compute all answers to the sub-queries in polynomial time.

Each answer polynomial in IPIR has number of monomials O(n1/s) where the coefficients of the

monomials are in |F|. Therefore, the number of bits of each answer is Õ(n1/s); the total number of

preprocessing bits is bounded by nc′1s.

Remark 13. Typically for Reed-Muller PIR (Figure 3.2.3), we choose the parameters m, d, k, t

such that we can achieve polylogarithmic communication complexity with the minimum number

of servers. However, in the inner-outer PIR composition, we want to make inner PIR database

size Θ(n) so that we get O(n1/s) communication, therefore we choose the number of servers to be

Θ(n1/m), which is not as good as the typical case where there is polylogarithmic servers.

Theorem 3.5.4. For every constant 0 < γ < 1, there exists a Reed-Muller PIR Φ and a (⌈2/γ⌉)-

CNF PIR Ψ, such that on any database size n ∈ N, given any ϵ > 0, for all C ≥ c0n
1+4/γ/ϵ8 where

c0 is some constant, the construction ShPIR(Φ,Ψ) is a (Π, C, ϵ)-secure PIR where Π is uniform.

Furthermore, assuming one-time preprocessing, the construction has

• per-query server computation O(nγ),

104

• per-query client computation O(nγ),

• per-query communication O(nγ),

• per-query message complexity O(nγ),

• server storage is Õ(n1+γ/2).

We defer the full proof of Theorem 3.5.4 to Appendix C.5. One thing to note here is that the

reduced communication per client with CNF shares comes at a price—to achieve the same level of

security, we need a larger number of clients.

Remark 14 (Sub-polynomial communication assuming super-polynomial number of clients). An

interesting consequence of the CNF-based IPIR is that it also enables more efficient protocols in the

shuffle model. Using a (log n)-server CNF-based protocol as our IPIR, we can achieve communication

of O(polylog(n)) with the assumption that there are at least some super-polynomial nO(logn) number

of clients. This results in better asymptotic complexity than the best existing protocols [DG15] in

the standard-model PIR which use a constant numbers of servers. Note that the shuffle model

compilation means that still only one server is required for our protocol and therefore we do not

require the non-collusion assumptions of the standard-model CNF-based PIR.

Remark 15 (Negligible security with slightly sublinear communication). Our main result only

achieves inverse-polynomial rather than negligible security error. We note that if one settles for

slightly sublinear communication, there is a simple solution that achieves negligible security error

and proceeds as follows. The server writes the n-bit database as an m ×m matrix over Z2 where

m =
√
n. Each client writes the column it is interested in as a unit vector q ∈ Zm

2 . Assuming C

clients query at the same time, where C is super-linear in n, each client splits the vector q into

k = O((m+ σ)/ logC) additive shares, for security parameter σ = log2 n. For each query q′ ∈ Zm
2 ,

the server responds with X · q′ ∈ Zm
2 . By the tight security analysis of the additive split-and-mix

protocol [IKOS06, BBGN20, GMPV20], the security error is negligible in n, i.e., Θ(1/nlogn), and

both the query and the answer are of size k ·m = O(n/ log n).

105

3.6 PIR with variable-sized records

So far, our motivation for studying the shuffle model in the context of PIR was its natural occurrence

in setting with multiple clients. In this section, we discuss a completely orthogonal use case—

variable-sized database records—that also motivates our study of the shuffle model.

3.6.1 Motivation

Real-world databases typically contain records in a wide variety of sizes—a platform like Youtube,

for instance, houses both 30-second shorts along with 5 hour long documentaries. In many situations,

knowing merely the size of the record can help to identify the record itself (or at least substantially

reduce the possibility space). Consequently, for PIR protocols to be implemented for such databases

in practice, it is necessary to also prevent leakage of the size of the record accessed.

Unfortunately, existing literature on PIR usually considers databases where each record is of the

same size. In particular, in the standard PIR setting, the only way to hide the size of the records

retrieved is to pad each record to the length of the largest record (or some upper bound), or pack

smaller records to the size of the largest record [GCM+16, ASA+21]. This means that a client who

only wishes to access small records still needs to pay the high communication cost of retrieving the

largest record. This is highly sub-optimal especially because in practice, we expect most clients to

query for average-sized records, while only a few clients query for very large ones.

Contrary to the standard model, we show that the shuffle model enables more efficient hiding for

the length of retrieved records (e.g., compared to padding every record to the maximum length).

We give a way of private retrieval for variable-sized records without the need of any padding, where

the cost of retrieving a record is proportional to the length of this record rather than the length of

the largest record.

A simple yet effective solution in the shuffle model. A simple solution to handle variable-sized records

in the shuffle model is to split each record of ℓ bits down into 1-bit sub-records, assuming 1 bit is

the smallest length of the original records in the database w.l.o.g. Then, a client wanting to query

for a record of length ℓ simply makes ℓ PIR queries. Note that given multiple clients, the shuffle

106

model provides the property to hide length of any individual queried record; only the total lengths

of all retrieved records is leaked. This yet simple technique has a nice property: the communication

per client is proportional only to ℓ but not the maximum record size L (which can be much larger).

It is easy to think that client anonymity trivializes the problem but this is not the case. The above

simple solution works because the multi-set of all sub-lengths being queried is identical given a

particular sum of record lengths. The same is not true if the records are split in other ways, e.g.,

using the powers of 2 corresponding to the binary encoding; there are many cases where a certain

multi-set directly or indirectly reveals the set of original lengths configurations. Finally, revealing

the total length of all queried records may leak non-trivial information when the number of clients

is small. As a toy example, consider a database x with only two entries: x1 of size 1, and x2 of size

1000, and two clients in the shuffle model. In this case, the sum of the record lengths can directly

reveal the queried indices of the two clients.

Our goal, therefore, is to identify under what parameter regimes the privacy of variable-sized records

can be achieved, and if this can be done with better efficiency than the simple solution of splitting

down to 1-bit sub-records.

3.6.2 Problem statement

Definition 3.6.1 (Record-splitting in the shuffle model). A splitting algorithm Split(ℓ;L), param-

eterized by a maximum length L, takes in length ℓ ∈ [L], and outputs a tuple (wj)j∈[h] of values

where h = h(ℓ, L) is a (possibly randomized) function of ℓ, L. The algorithm needs to satisfy the

following properties:

Correctness. For every ℓ ∈ [L], letting (w1, . . . , wh)←$ Split(ℓ;L), it holds that
∑h

j=1wj ≥ ℓ.

Security. As in our definition for PIR in the shuffle model, we will also parameterize security here

by a shuffler Π and the number of clients C. Let Πc = {Π}c∈N be an ensemble such that Πc is a

distribution over the symmetric group Sc. When Π is unspecified, we assume that each Πc is a

uniform distribution over Sc; we refer to this as the uniform or perfect shuffler.

107

For a given L,Π, C, given a tuple (ℓ1, . . . , ℓC) ∈ [L]C of queried lengths, define the distribution

WL,Π,C(ℓ1, . . . , ℓC) =



(w
(1)
1 , . . . , w

(1)
h1

) ←$ Split(ℓ1;L)

· · ·

π(w) : (w
(C)
1 , . . . , w

(C)
hC

) ←$ Split(ℓC ;L)

w← (w
(1)
1 , . . . , w

(1)
h1

, . . . , w
(C)
1 , . . . , w

(C)
hC

)

π
$←− Π(

∑
j∈[C] hj)


.

We say that Split is (Π, C, ϵ)-secure if for every L ∈ N, on any two

(ℓ1, . . . , ℓC), (ℓ
′
1, . . . , ℓ

′
C) ∈ [L]C such that

∑
j∈[C]

ℓj =
∑
j∈[C]

ℓ′j ,

it holds that SD(WL,Π,C(ℓ1, . . . , ℓC),WL,Π,C(ℓ
′
1, . . . , ℓ

′
C)) ≤ ϵ.

Efficiency. We want to capture the efficiency of algorithm Split by measuring the portion of bits

the client wants to retrieve in all the bits the client actually retrieves. We say that Split has

bit efficiency µ, if for every L ∈ N, and all ℓ ∈ [L], let (w1, . . . , wh)←$ Split(ℓ;L), it holds that

(
∑h

j=1wj)/ℓ ≤ 1/µ.

Note that 1/L ≤ µ ≤ 1. When µ = 1, there is no waste on bits retrieved by the client; when

µ = 1/L, it is the same as padding.

Another efficiency metric we consider is message complexity, which we measure as E[h(ℓ;L)], where

the randomness comes from the Split algorithm.

Remark 16. In most situations, leaking merely the total lengths of all the queried records is quite

benign. But if desired, the clients can mitigate this leakage by randomly increasing the queried

length. Note that in the standard PIR, a single client query leaks an upper bound on the record

size; while in the shuffle model, the size of any single queried item is not leaked.

108

PIR constructions with variable-sized records

The problem we consider has two parameters: the ratio of the maximum length to the minimum

length, denoted as L; and the number of clients C. Assume w.l.o.g that the minimum length is 1,

i.e., the maximum length is L. We first build some intuition on which parameter regimes support

non-trivial solutions.

Parameter regime. Consider the following two cases, where 2β clients query the database where the

sum of lengths queried is β · 2β .

• Case 1: 2j clients query the records with length 2β−j , for all j = 1, . . . , β.

• Case 2: All the 2β clients query the records with length β.

The above example conveys that, when the number of clients C is large compared to the record

length, essentially there is no better solution than simply splitting each record down to one bit.

Therefore, we will focus on solutions that work when C is much smaller than L, e.g., C = polylogL.

Our idea to improve efficiency over the plain construction (i.e., split down to one bit) is to have

the client retrieve more bits in a single PIR query. In particular, a client splits the length of its

desired record according to some Split algorithm (specified later), and queries for the corresponding

sub-records. We describe how the splitting compiles with PIR (in a black-box way) below.

Compiling record splitting with PIR. All the records are concatenated together to an n-bit string and

the server stores this string as the database. Note that different from the standard model, the server

does not pad the records to the same length. Then the server (virtually) prepares log n databases,

each of n bits; the j-th database is partitioned into entries of size of 2j for j = 0, . . . , log n. The

server also sets up a helper database that stores, for each item, the range of indices in the original

database (i.e., concatenation) that the record resides. For example, the 10-th entry in the helper

database stores the information: the 10-th record consists of the 100 bits from index 200 to 300 in

the n-bit database.

109

To retrieve an item, the client first makes a PIR query to the helper database to obtain the range of

the indices to which the record corresponds. Suppose the record is of length ℓ. Now the client runs

the algorithm Split that takes in ℓ and splits it to h sub-lengths. Then client retrieves h sub-records

from the log n logical databases; these h sub-records should cover the entire range that the client

wants to query.11

A concrete example is as follows. Suppose the client wants to retrieve the record that resides in

range [11, 16] ⊂ [n], and the Split algorithm outputs lengths 2, 4. The client will issue a query of the

form (PIR.Query(6), “size 2”) and (PIR.Query(4), “size 4”). The former tuple queries the 6th size-2

sub-record, i.e., [11, 12], and the latter tuple is for the 4th size-4 sub-record, i.e., [13, 16]. The server

answers to the former tuple by viewing the n-bit database as 2 bits per entry, and answers to the

latter tuple by viewing the database as 4 bits per entry.

3.6.3 Construction: Recursive splitting

Different from our earlier constructions in Section 3.5, Split relies on knowing the upper bound of

the number of clients. We briefly describe the algorithm below and give the formal description in

Figure 3.6.1.

Each client builds logL levels (or bins), where the jth level represents length 2j for j = 0, . . . , logL.

The Split algorithm can be viewed as placing balls at the logL levels. For instance, two balls at

level 0 and one ball at level 1 means the client should send two queries for length-1 sub-items and

one query for a length-2 sub-item. The client starts with an initial configuration where ℓ is split

into lengths of power of 2; this corresponds to placing at most one ball at the corresponding levels.

For instance, if the record length is 40, the client splits it to 32 and 8, which corresponds to placing

one ball at level 5 and one ball at level 3. Then starting from the highest level (the (logL)-th level),

for each ball at the current level j, with probability 1/2 split it to two balls and place them at level

j− 1; with probability 1/2 the client leaves this ball at the current level. The eventual balls-to-bins

configuration is the output of Split algorithm.
11The client can label the query with the level number so that the server knows how to partition the database

when answering queries.

110

Parameters.
L: Maximum length of database records (w.l.o.g. assume L is power of 2)
ρ: Full-split depth ρ ∈ [logL].
Inputs.
ℓ: the length of query record.

1. Let B0, . . . , BlogL−1 ∈ {0, 1} be binary decomposition of ℓ, i.e., ℓ =
∑logL−1

j=0 Bj · 2j .

2. For j from logL− 1 to logL− ρ: // fully split
(a) Set Bj−1 ← 2Bj .

3. For j from logL− ρ to 1: // for each sub-record, split with probability 1/2
(a) Set Sj := 0.

(b) For b ∈ [Bj]: Sample r
$←− {0, 1}; if r = 0, then set Sj ← Sj + 1.

(c) Set Bj ← Bj − Sj and set Bj−1 ← Bj−1 + 2Sj .

4. Output (20, . . . , 20︸ ︷︷ ︸
B0

, 21, . . . , 21︸ ︷︷ ︸
B1

, . . . , 2logL−1, . . . , 2logL−1︸ ︷︷ ︸
Blog L−1

).

Construction 3.6.1: Algorithm Split.

In our construction, there is a parameter ρ that specifies the depth of the levels until which all balls

are split. ρ is a trade-off factor between efficiency and security: when ρ = logL, we get perfect

security with message complexity equal to the length of the record; when ρ = 0, no ball is split and

the message complexity is simply 1 but without security. Theorem 3.6.2 gives the property of our

construction; the full proof is deferred to Appendix C.6.

Theorem 3.6.2. Given an upper bound C on the number of clients, a uniform Π, and any ϵ > 0,

there exists ρ = ρ(C,L, ϵ) such that the algorithm Split in Construction 3.6.1 is (Π, C, ϵ)-secure with

bit efficiency µ = 1 and message complexity (2C log ℓ)/ϵ2 for retrieving record of length ℓ. Asymp-

totically, when C = polylogL where L is the maximum length of records, the message complexity for

a client retrieving a record of size ℓ is polylogℓ/ϵ2.

3.7 Related work and discussion

Below we survey existing work in the standard PIR model and contrast them with this work.

Kushilevitz and Ostrovsky [KO97] gave the first single-server PIR scheme based on quadratic resid-

uosity assumption with linear server computation. Beimel, Ishai and Malkin [BIM00] later showed

that linear server computation (no matter in multi-server or single-server schemes) is inherent if no

111

extra storage (at the server or the clients) is allowed. Subsequently, there are many works aiming

to construct PIR with fast server computation under different models, and we categorize them as

follows.

PIR with batched queries. “Batch PIR” processes a batch of queries to achieve sublinear cost

per query. The batch PIR schemes [IKOS04, Hen16, CHLR18, ACLS18, MR23] work in the standard

PIR model but amortize costs when a single client wants to simultaneously query multiple records,

and they require the client to know the sequence of queries it makes in advance (i.e., the batch

is non-adaptive). In contrast, we consider a fundamentally different model, where multiple clients

simultaneously query a single server and their queries are shuffled. A qualitative advantage of the

shuffle model is that it enables sublinear computation in the single-server setting without using

cryptographic assumptions.

PIR with preprocessing. This class of schemes [BIM00, WY05, CHR17, BIPW17, Lip09,

LMW23] utilize extra storage at the server(s), where the database is encoded into some (larger)

forms that allow answering each query with sublinear computation. Our schemes fall in this cate-

gory, where the server pre-computes the answers to all the sub-queries and stores them in a table,

and the client performs a sublinear number of table lookups (in a private way). This is feasible

(polynomial time in n) in terms of preprocessing cost and server storage when each sub-query has

bit length O(log n).

PIR in the offline/online model. Recent work [CGHK22] construct PIR schemes where the

extra storage is incurred at the clients: a client first runs an offline phase with the server, where

the server does a (super)linear computation to generate hints and sends them to the client. In the

subsequent online phase, the server answers each query with sublinear cost and the client obtains

the queried item with the help of the hints. The hints can be reused for n1/4 number of online

queries, namely, the offline cost is amortized over an adaptive batch of queries.

There are also schemes [HHCG+23, DPC23, ZPSZ23] that work in a slightly different offline/online

model, where they allow poly(n) number of online queries (from the same client) but with linear

(though concretely fast) server computation per query [HHCG+23, DPC23]; or they have linear

112

client communication in the offline phase in exchange for sublinear online computation [ZPSZ23].

Our schemes do not require extra hints at clients, and the client can make an unlimited number of

queries after a one-time server preprocessing.

Other works towards doubly efficient PIR. Ishai et al. [IKOS06] give a single-server PIR

construction in the shuffle model as follows: each client runs a query algorithm of an information-

theoretic multi-server PIR [BIK05] on its query index and generates sub-queries, following which the

sub-queries from many clients are shuffled together and sent to the server. However, this construction

is shown to be secure only under non-standard computational assumptions (specifically the hardness

of reconstructing noisy low-degree curves in a low-dimensional space [IKOS06, CS03]). In contrast,

our construction provides statistical security. The trade-off is that we require more clients accessing

the database compared to theirs, and settle for inverse-polynomial security error. We leave open the

possibility of eliminating these limitations. An alternative avenue for future work is obtaining more

efficient computational PIR schemes in the shuffle model, improving the efficiency of the shuffle-

based protocol from [IKOS06]. While there are single-server doubly efficient computational PIR

protocols even in the plain model [BIPW17, CHR17, LMW23], they either rely on obfuscation

or fully homomorphic encryption and therefore the potential of achieving good concrete efficiency

along this direction may be limited. The shuffle model seems to have better potential for practical

single-server solutions.

Differential privacy (DP) for PIR. A line of work [TDG16, AIVG22] considers the DP notion

for PIR assuming client anonymity. Here, clients send their query indices via onion routing to the

server, and privacy is guaranteed by the shuffling of client indices along with some noise queries.

Here DP guarantees that the server cannot distinguish neighboring sets of queries (i.e., differing

in exactly one client). Unfortunately, DP is substantially weaker than standard PIR security and

therefore insufficient in any application where client queries can be arbitrarily correlated, as we

illustrate below.

Consider an example where a disproportionately large number of clients access the same sensitive

entry in the database; in standard security notion, this should be indistinguishable (statistically

113

or computationally) from the case where nobody accesses this entry, whereas the DP solutions fail

here. Meanwhile, in many applications, the information of whether clients are correlated accessing

the same or similar items can give the adversaries extra powers: consider a cloud service that stores

encrypted medical records, and the adversary can use the access frequencies of the records together

with public health statistics to recover the underlying plaintext of the encrypted records [ZKP16,

GKL+20]. In contrast, our construction achieves a stronger notion: for any set of query indices, the

messages observed by the server look close to random.

Future research. While the per-query cost in this work is only O(nγ) for any small γ > 0, it

requires a large number of clients—specifically, n1+4/γ—to access the database simultaneously. An

interesting direction for future research is obtaining concretely efficient PIR schemes in the shuffle

model, possibly by settling for computational security. A first step of this direction was taken

recently in our follow-up work [GIK+24].

We show that shuffling sub-queries of a simple k-server PIR protocol suffices to achieve privacy.

In this PIR protocol, the server represents the n-bit database as a
√
n ×
√
n matrix, and a client

queries the i-th column of the database that contains their desired bit. The query is represented as

one-hot vector of length
√
n where the i-th position is 1. To generate sub-queries, a client additively

splits the one-hot vector into k shares, and each share is the sub-query to a server. Each server

multiplies the database matrix with the received sub-query and gives back the answer to the client.

The client can reconstruct a column of the database that contains their desired bit. The privacy

from shuffling these sub-queries reduces to a hardness assumption called multi-disjoint syndrome

decoding, a generalization of the classical syndrome decoding assumption [BFKL93, AIK07].

114

APPENDIX A

DEFERRED MATERIALS FOR FLAMINGO PROTOCOL

A.1 Failure and threat model details

In this section, we give the full details of the dropout rate and the corruption rate (§2.2.3).

Dropout rate. Recall that we upper bound the dropout rate of the sum contributors (St) in one

round as δ. For decryptors, we consider the dropout rate in one summation round and assume it is

at most δD. Note that δ and δD are individually determined by the server timeout at those steps

(recall that in each round, clients in St only participate in the first step; the following two steps

only involve decryptors).

Corruption rate. For corruption, we denote the corrupted rate in St as ηSt and the corrupted

rate in decryptors as ηD. In the Flamingo system, η is given; ηSt and ηD depends on η. Note that

the fraction of malicious clients in a chosen subset of [N] (e.g., St, D) may not be exactly η, but

rather a random variable η∗ from a distribution that is parameterized by η, N and the size of the

chosen set. Since the expectation of η∗ is equal to η, and when the size of the chosen set is large

(e.g., St), the deviation of η∗ from η is negligible (i.e., η∗ is almost equal to η). Therefore, ηSt can

be considered as equal to η. On the other hand, since D is a small set, we cannot assume ηD is

equal to η. Later in Appendix A.3 we show how to choose L to ensure ηD satisfies the inequality

required in Theorem 2.2.4 with overwhelming probability.

Security parameters. In the following definitions and proofs, we use κ for the information-

theoretic security parameter and λ for the computational security parameter.

A.2 Deferred details for full protocol

A.2.1 Definition of cryptographic primitives

In this section, we formally define the cryptographic primitives used in Flamingo protocol that are

not given in Section 2.2.4.

Definition A.2.1 (DDH assumption). Given a cyclic group G with order q, and let the generator

115

Protocol Πsetup.

Parties. Clients 1, . . . , N and a server.

Parameters. Number of pre-selected decryptors L. Let L = 3ℓ+ 1.

Protocol outputs. A set of t clients (2ℓ+ 1 ≤ t ≤ 3ℓ+ 1) hold secret sharing of a secret key SK. All the clients

in [N] and the server hold the associated public key PK.

• The server and all the clients in [N] invoke Frand and receive a binary string v
$←− {0, 1}λ.

• The server and all the clients in [N] computes

D0 ← ChooseSet(v, 0, L,N).

• All the clients u ∈ D0 and the server run ΠDKG (Fig. A.2).

• The server broadcasts the signed PKs received from the clients in D0 to all the clients in [N].

• A client in [N] aborts if it received less than 2ℓ + 1 valid signatures on PKs signed by the parties defined

by ChooseSet(v, 0, L,N).

Figure A.1: Setup phase with total number of clients N . Frand is modeled as a random beacon
service.

of G be g. Let a, b, c be uniformly sampled elements from Zq. We say that DDH is hard if the two

distributions (ga, gb, gab) and (ga, gb, gc) are computationally indistinguishable.

Definition A.2.2 (ElGamal encryption). Let G be a group of order q in which DDH is hard.

ElGamal encryption scheme consists of the following three algorithms.

• AsymGen(1λ) → (SK,PK): sample a random element s from Zq, and output SK = s and

PK = gs.

• AsymEnc(PK, h) → (c0, c1): sample a random element y from Zq and compute c0 = gy and

c1 = h · PKy.

• AsymDec(SK, (c0, c1))→ h: compute h = (cSK0)−1 · c1.

We say that ElGamal encryption is secure if it has CPA security. Note that if DDH assumption

(Def.A.2.1) holds, then ElGamal encryption is secure.

Definition A.2.3 (Authenticated encryption). An authenticated encryption scheme consists of the

following algorithms:

116

• SymAuthGen(1λ)→ k: sample a key k uniformly random from {0, 1}λ.

• SymAuthEnc(k,m)→ c: take in a key k and a message m, output a ciphertext c.

• SymAuthDec(k, c): take in a key k and a ciphertext c, output a plaintext m or ⊥ (decryption

fails).

We say that the scheme is secure if it has CPA security and ciphertext integrity.

For simplicity, we use AsymEnc and SymAuthEnc to refer to the encryption schemes.

Definition A.2.4 (Signature scheme). A signature scheme consists of the following algorithms:

• SGen(1λ)→ (sk, pk): generate a pair of siging key sk and verfication key pk.

• Sign(sk,m)→ σ: take in a signing key sk and message m, outputs a signature σ.

• V erSig(pk,m, σ)→ b: take in a verification key pk, a messagee m and a signature σ, output

valid or not as b = 1, 0.

We say that the signature scheme is secure if the probability that, given m1, . . . ,mz, an attacker who

can query the signing challenger and finds a valid (m′, σ′) where m′ ̸∈ {m1, . . . ,mz} is negligible.

A.2.2 Setup phase and distributed key generation

The setup protocol is conceptually simple, as shown in Figure A.1. A crucial part of the setup phase

is the distributed key generation (DKG). We first describe the algorithms used in DKG.

Algorithms. Let G be a group with order q in which discrete log is hard. The discrete-log based

DKG protocol builds on Feldman verifiable secret sharing [Fel87], which we provide below. The

sharing algorithm takes in the threshold parameters L, ℓ, and a secret s ∈ Zq, chooses a polynomial

with random coefficients except the constant term, i.e., p(X) = a0 + a1X + . . .+ aℓX
ℓ(a0 = s), and

outputs the commitments Ak = gak ∈ G for k = 0, 1, . . . , ℓ. The j-th share sj is p(j) for j = 1, . . . , L.

To verify the j-th share against the commitments, the verification algorithm takes in sj and a set

117

of commitments {Ak}ℓk=0, and checks if

gsj =
ℓ∏

k=0

(Ak)
jk .

We define the above algorithms as

• FShare(s, ℓ, L)→ {sj}Lj=1, {Ak}ℓk=0,

• FV erify(sj , {Ak}ℓk=0)→ b where b ∈ {0, 1}.

The GJKR-DKG uses a variant of the above algorithm, PShare and PV erify based on Pedersen

commitment, for security reason [GJKR06]. The PShare algorithm chooses two random polynomi-

als

p(X) = a0 + a1X + . . .+ aℓX
ℓ, a0 = s

p′(X) = b0 + b1X + . . .+ bℓX
ℓ

and outputs

{p(j)}Lj=1, {p′(j)}Lj=1, Ck := gakhbk for k = 0, . . . , ℓ,

where g, h ∈ G.

To verify against the share sj = p(j), PV erify takes in s′j = p′(j) and {Ck}ℓk=0, and checks if

gsjhs
′
j =

ℓ∏
k=0

(Ck)
jk .

The algorithms PShare and PV erify can be defined analogously to Fshare and FV erify:

• PShare(s, ℓ, L)→ {sj}Lj=1, {s′j}Lj=1, {Ck}ℓk=0,

• PV erify(sj , s
′
j , {Ck}ℓk=0)→ b where b ∈ {0, 1}.

118

Protocol. We give the modified DKG protocol ΠDKG from GJKR-DKG in Figure A.2. The

participating parties can drop out, as long as ηD + δD < 1/3.

Correctness and security. We analyze the properties of ΠDKG in this section. We start by

revisiting the correctness and security definitions of GJKR-DKG, and then discuss how our definition

differs from theirs because of a weakening of the communication model. In GJKR-DKG, correctness

has three folds:

1. All subsets of honest parties define the same unique secret key.

2. All honest parties have the same public key.

3. The secret key is uniformly random.

Security means that no information about the secret key can be learned by the adversary except

for what is implied by the public key.

For ΠDKG, if the server is honest, then our communication model (§2.2.3) is equivalent to having

a fully synchronous channel, hence in this case the correctness and security properties in the prior

work hold. When the server is malicious, we show that ΠDKG satisfies the following correctness (C1,

C2, C3, C4) and security (S).

C1. Each honest party either has no secret at the end or agrees on the same QUAL with other

honest parties.

C2. The agreed QUAL sets defines a unique secret key.

C3. The secret key defined by QUAL is uniformly random.

C4. Each honest party, either has no public key, or outputs the same public key with other honest

parties.

S. Malicious parties learns no information about the secret key except for what is implied by the

public key.

119

Lemma A.2.5. Let the participants in DKG be L parties and a server. If δD + ηD < 1/3, then

under the communication model defined in Section 2.2.3, protocol ΠDKG (Fig. A.2) has properties

C1, C2, C3, C4 and S in the presence of a malicious adversary controlling the server and up to ηD

fraction of the parties.

Proof. Since L = 3ℓ+1, and by δD+ηD < 1/3, at most ℓ are malicious (the dropouts can be treated

as malicious parties who do not send the prescribed messages). We first show under which cases the

honest parties will have no share. Note that the parties that are excluded from D2 are those who

are honest but did not receive a complaint against a malicious party who performed wrong sharing;

and parties that are excluded from D3 are those who have complained at i in step (b) but did not

receive shares from i at this step. If the server drops messages (sent from one online honest party

to another) in the above two cases, then in the cross-check step, the honest parties will not receive

more than 2ℓ+1 QUALs, and hence will abort. In this case, honest parties in the end has no share.

Now we prove C1 by contradiction. Suppose there are two honest parties P1 and P2 at the end

of the protocol who holds secrets (not abort) and they have different QUAL. Then this means P1

received at least 2ℓ + 1 same QUAL sets S1 and P2 received at least same 2ℓ + 1 QUAL sets S2.

W.l.o.g., assume that there are ℓ−v malicious parties (v ≥ 0). In the 2ℓ+1 sets S1, at least ℓ+1+v

of them are from honest parties. Similarly, for the 2ℓ+ 1 sets S2, at least ℓ+ 1 + v are from other

honest parties different than above (since an honest party cannot send both S1 and S2). However,

note that we have in total 2ℓ+ 1 + v honest parties, which derives a contradiction.

Recall that at most ℓ parties are malicious, so the QUAL set has at least ℓ+1 parties, and since we

have C1, now C2 is guaranteed. Moreover, since QUAL contains at least one honest party, the secret

key is uniform (C3). C4 follows exactly from the work GJKR. The proof for S is the same as GKJR,

except that the simulator additionally simulates the agreement protocol in Lemma A.4.1.

Remark 17. An important difference between ΠDKG and standard DKG protocols is that we allow

aborts and allow honest parties to not have shares at the end of the protocol. When some honest

parties do not have shares of the secret key, the server is still able to get sum (decryption still works)

120

because malicious parties hold the shares.

Protocol ΠDKG based on discrete log

Parameters. A set of L parties (denoted as D0), threshold ℓ where 3ℓ+ 1 = L. δD + ηD < 1/3.

Protocol outputs. A subset of the L parties hold secret sharing of a secret key s ∈ Zq; the server holds the

public key gs signed by all the clients.

Notes. The parties have access to PKI. All messages sent from one party to another via the server are signed and

end-to-end encrypted.

1. Each party i performs verifiable secret sharing (VSS) as a dealer:

(a) Share:

Party i ∈ D0 randomly chooses si ∈ Zq, computes {si,j}Lj=1, {s′i,j}Lj=1, {Ci,k}ℓk=0 ← PShare(si, ℓ, L).

It also computes {Ak}ℓk=0 from FShare(s, ℓ, L) and stores it locally.

Send si,j and s′i,j to each party j, and {Ci,k}ℓi=0 to all parties j ∈ D0 via the server.

// Denote the set of parties who received all the prescribed messages after this step as D1.

(b) Verify and complain:

Each party j ∈ D1 checks whether it received at least (1 − δD)L valid signed shares. If not, abort;

otherwise continue.

Each party j ∈ D1, for each received share si,j , runs b← PV erify(j, si,j , s
′
i,j , {Ci,k}ℓk=0).

If b is 1, then party i does nothing; otherwise party i sends (complaints, j) to all the parties in D0

via the server.

// Denote the set of parties who received all the prescribed messages after this step as D2.

(c) Against complaint :

Each party i ∈ D2, who as a dealer, if received a valid signed (complaint, i) from j, sends si,j , s
′
i,j to

all parties in D0 via the server.

// Denote the set of parties who received all the prescribed messages after this step as D3.

(d) Disqualify :

Each party i ∈ D3 marks any party j as disqualified if it received more than 2ℓ + 1 valid signed

(complaints, j), or party j answers with sj,i, s
′
j,i such that PV erify(sj,i, s

′
j,i, {Cj,k}ℓk=1) outputs 0.

The non-disqualified parties form a set QUAL.

Each party i ∈ D3 signs the QUAL set and sends to all parties in D0 to the server. The server, on

receiving a valid signed QUAL, signs and sends it to all parties in D3.

(e) Cross-check QUAL:

Each party i ∈ D3 checks whether it receives at least 2ℓ + 1 valid signed QUAL, if so, they sum up

the shares in QUAL and derive a share of secret key. If not, abort.

Figure A.2: Protocol ΠDKG (Part I).

121

Protocol ΠDKG (Cont’d) based on discrete log

1. Compute public key:

(a) Each party i ∈ QUAL sends {Ai,k}ℓk=1 to all parties via the server.

(b) Each party i runs b′ ← FV erify(sj,i, {Aj,k}ℓk=1) for j ∈ QUAL. If b′ is 0, then party i sends to all

the parties in D3 ∩ QUAL via the server a message (complaint, j, sj,i, s′j,i) for those (sj,i, s
′
j,i) such

that b is 1 and b′ is 0.

// For b = 1 and b′ = 0: The check in step 1.d) passes but fails this step

(c) For each j such that (complaint, j, sj,i, s′j,i) is valid, parties reconstruct sj . For all parties in QUAL,

set yi = gsi , and compute PK =
∏

i∈QUAL yi. Parties in QUAL sign PK using their own signing

keys and send the signed PK to the server.

Figure A.3: Protocol ΠDKG (Part II).

A.2.3 Collection phase

The detailed protocol for each round in the collection phase is described in Figure A.4. At the

beginning of round t, the server notifies the clients who should be involved, namely St. A client

who gets a notification can download public keys of its neighbors At(i) from PKI server (the server

should tell clients how to map client IDs to the names in PKI). To reduce the overall run time,

clients can pre-fetch public keys used in the coming rounds.

A.2.4 Transfer shares

Every R rounds, the current set of decryptors D transfer shares of SK to a new set of decryp-

tors, Dnew. To do so, each u ∈ D computes a destination decryptors set Dnew for round t, by

ChooseSet(v, ⌈t/R⌉ , L,N). Assume now each decryptor u ∈ D holds share su of SK (i.e., there is

a polynomial p such that p(u) = su and p(0) = SK). To transfer its share, each u ∈ D acts as a VSS

dealer exactly the same as the first part in ΠDKG (Fig.2.9) to share su to new decryptor j ∈ Dnew.

In detail, u chooses a polynomial p∗u of degree ℓ and sets p∗u(0) = su and all other coefficients of p∗u

to be random. Then, u sends p∗u(j) to each new decryptor j ∈ Dnew.

Each new decryptor j ∈ Dnew receives the evaluation of the polynomials at point j (i.e., p∗u(j) for

all u ∈ D). The new share of SK held by j, s′j , is defined to be a linear combination of the received

shares: s′j :=
∑

u∈D βu · p∗u(j), where the combination coefficients {βu}u∈D are constants (given the

122

Collection phase: Πsum for round t out of T total rounds

Initial state from setup phase: each client i ∈ [N] holds a value v and public key PK = gs where SK = s; each

decryptor u ∈ D additionally holds a Shamir share of SK (threshold ℓ with 3ℓ+1 = L). We require δD+ηD < 1/3.

Steps for round t:

1. Report step.

Server performs the following:

Compute a set Qgraph ← ChooseSet(v, t, nt, N) and a graph Gt ← GenGraph(v, t,Qgraph); store

{At(i)}i∈Qgraph computed from Gt.

Notify each client i ∈ Qgraph that collection round t begins.

Each client i ∈ Qgraph performs the following:

Compute Qlocal
graph ← ChooseSet(v, t, nt, N), and if i ̸∈ Qlocal

graph, ignore this round.

Read from PKI gaj for j ∈ At(i), and compute ri,j by computing (gaj)ai and mapping it to {0, 1}λ.

Sample mi,t
$←− {0, 1}λ and compute {hi,j,t}j∈A(i) ← PRF(rij , t) for j ∈ At(i).

Send to server a message msgi,t consisting of

• V eci,t = xi,t + PRG(mi,t) +
∑

j∈At(i)
±PRG(hi,j,t),

• SymAuthEnc(ki,u,mi,u,t∥t), for u ∈ D,

• AsymEnc(PK, hi,j,t) for j ∈ At(i)

where mi,u,t ← Share(mi,t, ℓ, L), At(i) ← FindNeighbors(v, St, i), and AsymEnc (ElGamal) and

SymAuthEnc (authenticated encryption) are defined in Appendix A.2.1; along with the signatures σi,j,t ←

Sign(ski, ci,j,t∥t) for all ciphertext ci,j,t = AsymEnc(PK, hi,j,t) ∀j ∈ At(i).

2. Cross check step.

Server performs the following:

Denote the set of clients that respond within timeout as Qvec.

Compute partial sum z̃t =
∑

i∈Qvec
V eci,t.

Build decryption request req (req consists of clients in St to be labeled):

Initialize an empty set Ei for each i ∈ Qgraph, and

if i ∈ Qvec, label i with “online”,

and add SymAuthEnc(ki,u,mi,u,t∥t) to Ei, where ki,j is derived from PKI (Appendix A.2.1);

else label i with “offline”,

and add {(AsymEnc(PK, hi,j,t), σi,j,t}j∈At(i)∩Qvec) to Ei.

Send to each u ∈ D the request req and Ei of all clients i ∈ Qgraph.

Each decryptor u ∈ D performs the following:

Upon receiving a request req, compute σ∗
u ← Sign(sku, req∥t), and send (req, σ∗

u) to all other decryptors

via the server.

Figure A.4: Collection protocol Πsum (Part I).

123

Collection phase (Cont’d): Πsum for round t out of T total rounds

Initial state from setup phase: each client i ∈ [N] holds a value v and public key PK = gs where SK = s; each

decryptor u ∈ D additionally holds a Shamir share of SK (threshold ℓ with 3ℓ+1 = L). We require δD+ηD < 1/3.

Steps for round t:

1. Reconstruction step.

Each decryptor u ∈ D performs the following:

Ignore messages with signatures (σi,j,t or σ∗
u) with round number other than t.

Upon receiving a message (req, σ∗
u′), run b← V erSig(pki, req, σ

∗
u′). Ignore the message if b = 0.

Continue only if u received 2ℓ+1 or more same req messages that were not ignored. Denote such message

as req∗.

For req∗, continue only if

each client i ∈ St is either labeled as “online” or “offline”;

the number of “online” clients is at least (1− δ)nt;

all the “online” clients are connected in the graph;

each online client i has at least k online neighbors such that ηk < 2−κ.

For each i ∈ Qgraph,

For each SymAuthEnc(ki,u,mi,u,t∥t) in Ei, use ki,u (derived from PKI) to decrypt; send mi,u,t to the

server if the decryption succeeds;

For each (AsymEnc(PK, hi,j,t), σi,j,t) ∈ Ei, parse as ((c0, c1), σ) and send csu0 to the server if

V erSig((c0, c1), σ) outputs 1;

Server completes the sum:

Denote the set of decryptors whose messages have been received as U . Compute a set of interpolation

coefficients {βu}u∈U from U .

For each i ∈ Qgraph, reconstruct the mask mi,t or {hi,j,t}j∈At(i)∩Qvec :

For each parsed (c0, c1) meant for hi,j,t in Ei, compute hi,j,t as c1 · (
∏

u∈U (c
su
0)βu)−1;

For each set of received shares {mi,u,t}u∈U , compute mi,t as Recon({mi,u,t}u∈U).

Output zt = z̃t − PRG(mi,t) +
∑

j∈At(i)∩Qvec
±PRG(hi,j,t).

Figure A.5: Collection protocol Πsum (Part II).

124

set D, we can compute {βu}u∈D). Note that the same issue about communication model for DKG

also exists here, but the same relaxation applies.

Here we require that ηD + δD < 1/3 for both D and Dnew. As a result, each client j in a subset

D ⊆ Dnew holds a share su,j . For each receiving decryptor j ∈ D, it computes s′j =
∑

u∈Dold
βu ·su,j ,

where each βu is some fixed constant.

Since the sharing part is exactly the same as ΠDKG and the share combination happens locally, the

same correctness and security argument of DKG applies. Specifically, for correctness, each honest

party either has no secret at the end or agrees on the same QUAL with other honest parties; and

the QUAL defines the unique same secret key before resharing. For security, a malicious adversary

will not learn any information, but can cause the protocol aborts.

A.3 Requirements on Parameters

A.3.1 The number of decryptors

In this section, we show how to choose L such that, given N, η, δD, we can guarantee less than 1/3

of the L chosen decryptors are malicious. Note that δD is given because this can be controlled by

the server, i.e., the server can decide how long to wait for the decryptors to respond. On the other

hand, ηD is a random variable.

To guarantee 2δD + ηD < 1/3 (Theorem 2.2.4), a necessary condition is that η < 1/3 − 2δD.

This can be formalized as a probability question: given N clients where η fraction of them are

malicious, randomly sample L clients (decryptors) from them; the number of malicious clients X in

the decryptors should follow the tail bound of hypergeometric distribution [BBG+20, Section 2]:

Pr[X ≥ (η + (1/3− 2δD − η))L] ≤ e−2L(1/3−η−2δD)2 ,

For η and δD both being 1%, the choice of L = 60 (which we used for benchmarks in §2.2.10) gives

1.6× 10−5 probability. If we double L to be 120, then this guarantees 2.6× 10−10 probability.

125

A.3.2 Proof of Lemma 2.2.2

The algorithm in Figure 2.1 gives a random graph G(n, ϵ). A known result in random graphs is,

when the edge probability ϵ > (1+ω) lnn
n , where ω is an arbitrary positive value, the graph is almost

surely connected when n is large. Note that in BBGLR, they also use this observation to build the

graph that has significant less number of neighbors than a prior work by Bonawitz et al. [BIK+17],

but in their work since the clients chooses their neighbors, the resulting graph is a biased one; and

they guarantee that there is no small isolated components in the graph.

Concretely, from Gilbert [Gil59], let g(n, ϵ) be the probability that graph G(n, ϵ) has disconnected

components, and it can be recursively computed as

g(n, ϵ) = 1−
n−1∑
i=1

(
n− 1

i− 1

)
g(i, ϵ)(1− ϵ)i(n−i).

Number of nodes n 128 512 1024

Parameter ϵ (failure probability 10−6) 0.11 0.03 0.02

Parameter ϵ (failure probability 10−12) 0.25 0.06 0.03

Figure A.6: Parameters ϵ to ensure random graph connectivity.

We numerically depict the above upper bound of the probability g(n, ϵ) for different ϵ in Figure A.6.

For example, when n = 1024, to ensure less than 10−6 failure probability, we need ϵ ≥ 0.02, hence

the number of neighbors a client needs when δ = η = 0.01 is at least ⌈(ϵ+ δ + η)n⌉ = 41.

A.4 Security proofs

A.4.1 Security definition

We say a protocol Π securely realizes ideal functionality F in the presence of a malicious adversary

A if there exists a probabilistic polynomial time algorithm, or simulator, S, such that for any

probabilistic polynomial time A, the distribution of the output of the real-world execution of Π is

(statistically or computationally) indistinguishable from the distribution of the output of the ideal-

world execution invoking F : the output of both worlds’ execution includes the inputs and outputs

126

Functionality F (t)
sum

Parties: clients in St and a server.

Parameters: dropout rate δ and malicious rate η over nt clients.

• F (t)
sum receives a set Ot such that |Ot|/|St| ≤ δ, and from the adversary A a set of corrupted parties, C; and

xi,t from client i ∈ St\(Ot ∪ C).

• Fmal sends St and Ot to A, and asks A for a set Mt: if A replies with Mt ⊆ St\Ot such that |Mt|/|St| ≥ 1−δ,

then Fmal computes zt =
∑

i∈Mt\C xi,t and continues; otherwise Fmal sends abort to all the honest parties.

• Depending on whether the server is corrupted by A:

– If the server is corrupted by A, then Fmal outputs zt to all the parties corrupted by A.

– If the server is not corrupted by A, then Fmal asks A for a shift at and outputs zt + at to the server.

Figure A.7: Ideal functionality for round t in collection phase.

of honest parties the view of the adversary A. In our proof, we focus on the computational notion

of security. Note that S in the ideal world has one-time access to F , and has the inputs of the

corrupted parties controlled by A.

A.4.2 Ideal functionalities

We provide ideal functionality for Flamingo in Figure 2.4. Looking ahead in the proof, we also need

to define an ideal functionality for the setup phase and an ideal functionality for a single round in

the collection phase, which we give as Figure 2.3 and Figure A.7.

We model the trusted source of initial randomness as a functionality Frand; that is, a party or ideal

functionality on calling Frand will receive a uniform random value v in {0, 1}λ, where λ is the length

of the PRG seed.

A.4.3 Proof of Theorem 2.2.1

The ideal functionality Fsetup for the setup phase is defined in Figure 2.3. Depending on whether

the server is corrupted or not, we have the following two cases.

1. When the server is not corrupted, then the communication model is equivalent to a secure

broadcast channel. By security of GJKR, Πsetup securely realizes Fsetup.

127

2. When the server is corrupted, we build a simulator for the adversary A. We start by listing

the messages that A sees throughout the setup phase:

• A random value v from Frand;

• All the messages in ΠDKG that are sent via the server;

• All the messages in ΠDKG that are seen by the corrupted decryptors.

The simulator first calls Frand and receives a value v. Then the simulator interacts with A

acting as the honest decryptors. The simulator aborts if any honest decryptors would abort in

ΠDKG. There are two ways that A can cheat: 1) A cheats in ΠDKG, and in Appendix A.2.2,

we show the simulator can simulate the view of A; 2) A cheats outside ΠDKG, this means A

chooses a wrong set of decryptors, or it broadcasts wrong signatures. So the simulator aborts

as long as it does not receive 2ℓ+ 1 valid signatures on PKs signed by the set defined by v.

A.4.4 Proof of Theorem 2.2.3

The proof for dropout resilience is rather simple: in the setup phase, at most δD fraction of L

selected decryptors drop out; then in one round of the collection phase, another δD fraction of

decryptors can drop out. Since 2δD + ηD < 1/3, and 3ℓ + 1 = L (Fig. A.2), the online decryptors

can always help the server to reconstruct the secrets.

A.4.5 Proof of Theorem 2.2.4

We first present the proof for a single round: the collection protocol Πsum (Fig. A.4) for round t

securely realizes the ideal functionality F (t)
sum (Fig. A.7) in the random oracle model. From the ideal

functionality F (t)
sum we can see that the output sum is not determined by the actual dropout set Ot,

but instead Mt sent by the adversary.

In the proof below for a single round, for simplicity, we omit the round number t when there is

no ambiguity. We assume the adversary A controls a set of clients in [N], with the constraint

2δD + ηD < 1/3. Denote the set of corrupted clients in [N] as C and as before the set of the

decryptors is D; the malicious decryptors form a set C ∩ D and |C ∩ D| < L/3. From the analysis

128

in Appendix A.1, we have |C|/|St| ≤ η.

Case 1. We start with the case where the server is corrupted by A. Now we construct a simulator

S in the ideal world that runs A as a subroutine. We assume both the simulator S and ideal

functionality F (t)
sum (Fig. A.7) have access to an oracle Rdrop that provides the dropout sets Ot. In

other words, the dropout set is not provided ahead of the protocol but instead provided during

the execution (similar notion appeared in prior work [BIK+17]). Assume that in the ideal world,

initially a secret key SK is shared among at least 2L/3 clients in D. The simulation for round t is

as follows.

1. S received a set Ot from the oracle Rdrop.

2. S receives a set Mt from the adversary A.

3. S obtains zt from F (t)
sum.

4. (Report step) S interacts with A as in the report step acting as the honest clients i ∈ Mt\C

with masked inputs x′
i, such that

∑
i∈Mt\C x

′
i = zt.

Here the input vector x′
i and the mask mi are generated by S itself, and the pairwise secrets

are obtained by querying the PKI.

5. (Cross-check step) S interacts with A acting as honest decryptors as in the cross-check step.

6. (Reconstruction step) S interacts with A acting as honest decryptors in the reconstruction

step, where S uses the shares of the secret key SK to perform decryption of honest parties.

7. In the above steps, if all the honest decryptors would abort in the protocol prescription then

S sends abort to F (t)
sum, outputs whatever A outputs and halts.

We construct a series of hybrid execution, starting from the real world to the ideal world execution.

Hybrid 1. The view of A in the real world execution is the same as the view of A in the ideal world

when S would have the actual inputs of honest parties, {xi}i∈St\(C∪Ot), the pairwise and individual

129

masks, and the shares of the secret key SK. (S in fact would know SK in full because 3ℓ+ 1 = L

and that the number of honest parties is 2ℓ+ 1 or more.)

Hybrid 2. S now instead of using the actual secret key s, it replaces s with 0 and sends the

corresponding |C ∩ D| < L/3 shares of 0 in Zq to A. The joint distribution of less than L/3 shares

(recall that the threshold is ℓ where 3ℓ+ 1 = L), from the property of Shamir secret sharing, for s

and 0 are the same. Hence this hybrid has identical distribution to the previous hybrid.

Hybrid 3. S now instead of using the actual pairwise masks between honest parties, it samples

a random pairwise mask r′i,j from {0, 1}λ and computes the corresponding ElGamal ciphertext as

(c′0, c
′
1). S does not change the pairwise mask between a client controlled by A and an honest

client (such pairwise mask can be obtained by querying PKI to get gaj for an honest client j, and

compute (gaj)ai for malicious client i). We argue that A’s view in this hybrid is computationally

indistinguishable from the previous one as below.

First, we need to assume the mapping from G to {0, 1}λ is a random oracle. To specify, in the real

world, the mask ri,j is computed from the mapping on gaiaj ; and in the ideal world the mask r′i,j

is randomly sampled. Let Mt be the set of online clients that A labels in the real world (recall the

server is controlled by A). A in both worlds observes PRF(ri,j , t) between a client i out of Mt and

a client j in Mt, hence we require ri,j to be random as a PRF key.

Second, A in the ideal world does not observe the pairwise masks between clients in Mt, but

only the ciphertexts generated from r′i,j for those clients; and the distribution of the ciphertexts

is computationally indistinguishable from what A observed from the real world by the security of

ElGamal encryption (Definition A.2.2).

Hybrid 4. S now instead of using symmetric encryption (SymAuthEnc) of the shares of the actual

individual mask mi, it uses the symmetric encryption of a randomly sampled m′
i from {0, 1}λ as the

individual mask. Looking ahead in the proof, we also need to model the PRG as a random oracle

RPRG that can be thought of as a “perfect PRG” (see more details in a prior work [BIK+17]). For

130

all i ∈Mt/C, S samples V eci at random and programs RPRG to set PRG(m′
i) as

PRG(m′
i) = V eci − xi −

∑
±PRG(r′i,j),

where the vectors V eci’s are vectors observed in the real world. The view of A regarding V eci’s in

this hybrid is statistically indistinguishable to that in the previous hybrid.

Moreover, A learns the mi in the clear for those i ∈ Mt in both worlds, and the distributions of

those mi’s in the ideal and real world are identical; for those mi’s where i ̸∈Mt that A should not

learn, from the semantic security of the symmetric encryption scheme (Definition A.2.3), and the

threshold ℓ < L/3, A’s view in this hybrid is computationally indistinguishable from the previous

one.

Hybrid 5. S now instead of programming the oracle RPRG as in the previous hybrid, it programs

the oracle as

PRG(m′
i) = V eci − x′

i −
∑
±PRG(r′i,j),

where x′
i’s are chosen such that

∑
i∈Mt\C xi =

∑
i∈Mt\C x

′
i. From Lemma 6.1 in a prior work [BIK+17]

under the same setting, the distribution of A’s view in this hybrid is statistically indistinguishable

to that in the previous hybrid, except probability 2−κ: if the graph becomes disconnected or there

is an isolated node after removing Ot and C from St, then the server learns xi in the clear and thus

can distinguish between the two worlds. When A cheats by submitting Mt to S where the graph

formed by nodes in Mt is not connected, S simulates honest decryptors and output abort. In this

case, the distribution of A′s view in the ideal world is the same as that in the real world.

Hybrid 7. Same as the previous hybrid, except that the label messages req from honest decryptors

in the last step are replaced with the offline/online labels obtained from the oracle. In all steps, A

would cheat by sending invalid signatures to S; in this case S will abort. In the cross-check and

reconstruction steps, there are following ways that A would cheat here:

1. A sends multiple different Mt’s to Fsum. S in the ideal world will simulate the protocol in

Lemma A.4.1 below, and outputs whatever the protocol outputs.

131

2. A sends to Fsum a set Mt with less than (1−δ)nt clients, or the clients in Mt are disconnected,

or there is a client in Mt with less than ηk online neighbors. In this case, S will abort, which

is the same as in the real-world execution.

The last hybrid is exactly the ideal world execution. To better analyze the simulation succeeding

probability, we use κ1 to denote the security parameter for the graph connectivity (Lemma 2.2.2)

and use κ2 to denote the security parameter for the third checking in the cross-check round (§2.2.7).

The simulation can fail in two ways: 1) The graph gets disconnected (even when the server is

honest); 2) There exists a client in St such that all of its online neighbors are malicious. The former

happens with probability 2−κ1 . The latter is bounded by n · 2−κ2 : the probability that the opposite

event of 2) happens is (1− ηk)n ≈ 1−nηk (assuming ηk is very small). Thus the failure probability

nηk ≤ n · 2−κ2 .

Case 2. For the case where the server is not corrupted by A, the simulation is the same as Case

1, except that the simulator needs to compose the “shifts” added by A in each step to hit the value

at.

This completes the proof that for any single round t ∈ [T], the protocol Πsum for round t securely

realizes F (t)
sum when δD + ηD < 1/3, except probability 2−κ1 + n · 2−κ2 ≤ n · 2−κ+1, where κ =

min{κ1, κ2}.

Lemma A.4.1. Assume there exists a PKI and a secure signature scheme; there are 3ℓ+1 parties

with at most ℓ colluding malicious parties. Each party has an input bit of 0 or 1 from a server.

Then there exists a one-round protocol for honest parties to decide if the server sent the same value

to all the honest parties.

Proof. If an honest party receives 2ℓ + 1 or more messages with the same value, then it means

the server sends to all honest parties the same value. If an honest party receives less than 2ℓ + 1

messages with the same value, it will abort; in this case the server must have sent different messages

to different honest parties.

132

Remark 18. The above analysis of the agreement protocol shows where the threshold 1/3 comes

from. Consider the case where the threshold is 1/2 and 2ℓ+1 = L. For a target client, the (malicious)

server can tell ℓ/2 decryptors that the client is online and tell another ℓ/2 + 1 decryptors that the

client is offline. Then combined with the ℓ malicious decryptors’ shares, the server has ℓ/2+ℓ shares

to reconstruct individual mask, and ℓ/2 + 1 + ℓ shares to reeconstruct the pairwise mask.

Multi-round security. Our threat model assumes that A controls ηN clients throughout T

rounds (§2.2.3). There are two things we need to additionally consider on top of the single-

round proof: 1) the set St is generated from PRG, and 2) the pairwise mask hi,j,t computed

from PRF(ri,j , t). For the former, we program RPRG (like the single-round proof) such that the

ChooseSet outputs St.

Now we analyze the per-round pairwise masks. Let the distribution of the view of A in round t be

∆t. We next show that if there exists an adversary B, and two round number t1, t2 ∈ [T] such that

B can distinguish between ∆t1 and ∆t2 , then we can construct an adversary B′ who can break PRF

security. We call the challenger in PRF security game simply as challenger. There are two worlds

(specified by b = 0 or 1) for the PRF game. When b = 0, the challenger uses a random function;

when b = 1, the challenger uses PRF and a random key for the PRF. We construct B′ as follows.

On input t1, t2 from B, B′ asks challenger for hi,j,t1 for all clients i and j, and round t1, t2. Then

B′ creates the messages computed from hi,j,t’s as protocol Πsum prescribed; it generates two views

∆t1 ,∆t2 and sends to B. B′ outputs whatever B outputs.

Failure probability for T rounds. For a single round, we already showed that protocol Π(t)
sum

securely realizes F (t)
sum except probability p = n · 2−κ+1. The probability that for all the T rounds

the protocol is secure is therefore 1 − (1 − p)T , which is approximately 1 − T · p when T · p ≪ 1.

Therefore, the probability of failure (there exists a round that fails the simulation) is Tn2−κ+1.

133

APPENDIX B

DEFERRED MATERIALS FOR ARMADILLO PROTOCOL

B.1 Approximate proof of smallness

We describe the approximate proof of smallness from Lyubashevsky et al. [LNS21]. Let σ be a

security parameter for this approximate proof. The prover has a vector w of length m where

∥w∥∞ < B. Let B′ be the bound that the prover can prove with the following protocol and the gap

γ := B′/B should be larger than 19.5σ
√
m.

1. The prover first sends com(w) to the verifier.

2. The prover chooses a uniform length-σ vector y ← [±⌈b/2(1 + 1/σ)⌉]σ, and sends com(y) to

the verifier.

3. The verifier chooses R← Dσ×m and sends it to the prover, where each entry in R being zero

with probability 1/2, being 1 with probability 1/4 and −1 with probability 1/4.

4. The prover computes u := R ·w and z = u+ y. It restarts the protocol from Step 2 if either

∥u∥∞ > b/2λ or ∥z∥ > b/2.

5. The prover sends z to the verifier.

6. The verifier chooses a random r and sends r to the prover.

7. The prover and the verifier run an inner-product proof that

⟨R⊤r,w⟩+ ⟨r,y⟩ = ⟨R⊤r|r,w|y⟩ = ⟨z, r⟩,

where r = (r0, r1, . . . , rσ−1).

Note that ⟨z, r⟩ and R⊤r|r are known to both the prover and the verifier. The last step is essentially

a length-(m+ σ) linear proof.

134

Secure aggregation for training iteration t

Server and clients agree on public parameters:

• LWE parameters (λ, ℓ, p, q,A ∈ Zℓ×λ
q) and ∆ = ⌊q/p⌋.

• Proof parameters: Let G be the group of order q for the commit-and-proof system. Let F,G,H,K be

vectors of generators in G of length λ, ℓ, ℓ, C. The norm bounds are Bx(L∞), Bx(L2), Be(L∞).

• System model parameters: dropout rate is δ and malicious rate over this iteration of selected clients is η.

Setup. The set D of helpers is determined independently from the aggregation as described in Section 2.3.4, with

threshold being d. Let the secret key and public key for j ∈ D be (SKj , PKj). Let ki,j be MAC key shared

between client i and helper j ∈ D; such key can be derived from PKI.

Round 1 (Server → Clients)

Server notifies a set St of n clients (indexed by numbers in [n]) to start iteration t ∈ [T]. It also tells the helpers

the IDs of the n clients. Each helper j ∈ D derives the MAC key ki,j for each i ∈ St.

Round 1 (Clients → Server)

Client i ∈ St on input xi ∈ Zm
q , computes the following:

1. Compute yi = A · si + ei +∆ · xi mod q, where si
$←− Zλ

q , ei ← χm. // For outer aggregation

2. Compute degree-d packed secret sharing of si as ρi = (ρ
(1)
i , . . . , ρ

(D)
i). // For inner aggregation

3. Compute commitments comF(si), comG(ei), comH(xi); and comKj (ρ
(j)
i) for j ∈ D, where K is parsed as

{Kj}j∈D.

4. Set constraint system CSshares:

{io : (com(ρi), com(si),w), st : ⟨ρi|si,w⟩ = 0, wt : (ρi, si)},

and compute πshares ← Πip.P(io, st,wt), where m∗(X) ←$ F[X]≤D+λ−d−2 and w := (v1 · m∗(1), . . . , vn ·

m∗(D)).

5. Set constraint system CSenc:

{io : (com(si), com(xi), com(ei)),

st : yi = A · si + ei +∆ · xi, ∥x∥2 < Bx(L2), ∥e∥∞ < Be(L∞), ∥x∥∞ < Bx(L∞),

wt : (si,xi, ei)},

and compute πenc ← Πenc.P(io, st,wt).

6. Send a tuple to the server:

{“server” : (yi, com(si), com(xi), com(ei), πshares, πenc);

“helper j ∈ D” : ctj := AsymEnc(PKj , ρ
(j)
i), comKj (ρ

(j)
i) and a MAC tag σi,j ← Mac(ki,j , cti,j)}

Figure B.1: Armadillo protocol description for computing a single sum privately (Part I).

135

Secure aggregation for training iteration t contd.

Round 2 (Server → Helpers)

Let X1 be the clients who sent the prescribed messages in Round 1.

The server for each client i ∈ X1 computes:

1. Compute comK(ρi) :=
∏

j∈[C] comKj (ρ
(j)
i).

2. Run Πlinear.V(io, st, πshares) and Πenc.V(io, st, πenc).

3. Remove all clients with invalid proof from X1. Call this set X2.

4. If all the proofs are valid, forward messages intended for j ∈ D.

Round 2 (Helpers → Server)

Each helper j ∈ D: for every i,

1. Check if σi,j is valid. If there are fewer than (1− δ − η)n valid messages, abort. Otherwise continue.

2. It computes ρ
(j)
i := AsymDec(SKj , ctj), and checks if it is consistent with comKj (ρ

(j)
i). If not, create a

verifiable complaint that consists of ρ(j)i and the proof of decryption of ctj ; denote this proof as πdec.

3. It formed a set Vj that consists of all the clients whose shares are valid.

Round 3 (Server → Helpers)

Server tells all the helpers a set of clients who were complained about, denoted as B. Set S3 := S2 \ B.

Round 3 (Helpers → Server)

Each helper j ∈ D:

1. Remove clients in B from Vj .

2. Compute ρ(j) :=
∑

i∈Vj
ρ
(j)
i and send it to the server.

Server reconstructs the shares {ρ(j)}j∈D to s, and computes y :=
∑

i∈X2\B yi and computes ⌊y −A · s mod q⌉∆.

Figure B.2: Armadillo protocol description for computing a single sum privately (Part II).

B.2 Proof of decryption

We will instantiate the public key encryption using RSA cryptosystem. We choose two large primes

p, q and let N = pq, and we choose an integer e such that e is coprime to p − 1 and q − 1. The

public key is (N, e) and the private key is (N, d) where d = e−1 mod (p − 1)(q − 1). An integer

0 ≤ m < N is encrypted as c = me mod N and the decryption is computed as m = cd mod N .

Then proof of decryption relative to public key (N, e) is simple: a decryptor reveals the decryption

result m (claimed to be inconsistent with the commitment) to the server, and the server checks if

me equals c.

136

B.3 Full protocol for proof of encryption

We now describe proof protocol Πenc, which is proof of Regev’s encryption with bounded norms for

error and input.

Recall the constraints that client i wishes to prove are

CSenc : {io : (com(si), com(xi), com(ei)),

st : yi = Asi + ei +∆xi,

∥xi∥2 < Bx(L2),

∥xi∥∞ < Bx(L∞), ∥ei∥∞ < Be(L∞),

wt : (si,xi, ei)}

This can be proven using the techniques we presented in Section 2.3.4 and 2.3.4. Below we omit

index i for simplicity. Assuming the prover already commits to x, e, s.

1. The prover computes y = As+ e+∆x.

2. The prover chooses random r from Zq and let r := (r0, . . . , rℓ−1), and invokes an inner product

proof on ⟨y, r⟩ = ⟨A⊤r|r|∆r, s|e|x⟩.

3. The prover invokes proof of L2 norm (described in §2.3.4) on x.

4. The prover invokes proof of L∞ norm (described in §2.3.4) on e and x.

B.4 Security proof

We give our full protocol description in Figures B.1 and B.2. Below we give proof of Theorem 3.5.4.

Our proof methodology relies on the standard simulation-based proof, where we show that every

adversary attacking our protocol can be simulated by an adversary Sim in an ideal world where the

functionality F (Fig.2.11). In the following, we first prove privacy against any adversary corrupting

ηn clients and the server; then we prove robustness assuming the adversary corrupting ηn clients

but not the server (recall our threat model in §2.2.3).

137

The challenge in the simulation is the ability of Sim to generate a valid distribution for the honest

clients’ inputs, even without knowing their keys. To this end, we will show that Sim, when only

given the sum of the user inputs X =
∑n

i=1 xi, can simulate the expected leakage for the server

which includes n ciphertexts, the sum of the n keys K =
∑n

i=1 ki, and such that the sum of the n

ciphertexts, when decrypted with K, correctly decrypts to X.

Before we detail the definition of Sim and prove its security, we present an assumption that we will

use later.

Definition B.4.1 (A variant of Hint-LWE [LKK+18, CKK+21]). Consider integers λ,m, q and

a probability distribution χ′ on Zq, typically taken to be a normal distribution that has been

discretized. Then, the Hint-LWE assumption states that for all PPT adversaries A, there exists a

negligible function negl such that:

Pr


b = b′

A←$ Zm×λ
q ,k←$ Zλ

q , e←$ χ′m

r←$ Zλ
q , f ←$ χ′m

y0 := Ak+ e,y1←$ Zm
q , b←$ {0, 1}

b′←$A(A, (yb,k+ r, e+ f))


=

1

2
+ negl(κ)

where κ is the security parameter.

Intuitively, Hint-LWE assumption says that y0 looks pseudorandom to an adversary, even when

given some randomized leakage on the secret and the error vectors. Kim et al. [KLSS23] show that

solving Hint-LWE is no easier than solving LWE problem. For a secure LWE instance (λ,m, q, χ)

where χ is a discrete Gaussian distribution with standard deviation σ, the corresponding Hint-LWE

instance (λ,m, q, χ′), where χ′ is a discrete Gaussian distribution with standard deviation σ′, is

secure when σ′ = σ/
√
2. Consequently, any e ∈ χ can be written as e1 + e2 where e1, e2 ∈ χ′. This

138

gives us the real distribution DR, with the error term re-written and the last ciphertext modified.


K =

∑n
i=1 ki mod q ∀i ∈ [n],ki←$ Zλ

q , ei, fi←$ χ′m

y1, . . . ,yn ∀i ∈ [n− 1],yi = A · ki + ei +∆xi

yn = AK−
∑n−1

i=1 yi +
∑n

i=1(ei + fi) + ∆X


We now define Sim(A,X):

Sim(A,X)

Sample u1, . . . ,un−1←$ Zm
q

Sample k1, . . . ,kn←$ Zλ
q

Sample e1, . . . , en←$ χ′m

Sample f1, . . . , fn←$ χ′m

Set K :=
∑n

i=1 ki mod q

Set un = A ·K−
∑n−1

i=1 ui +
∑n

i=1(ei + fi) + ∆ ·X

Return K,u1, . . . ,un

In other words, the simulated distribution, DSim, is:


K =

∑n
i=1 ki mod q ∀ i ∈ [n] ki←$ Zλ

q , ei, fi←$ χ′m

u1, . . . ,un ∀ i ∈ [n− 1] ui←$ Zm
q

un = AK−
∑n−1

i=1 ui +
∑n

i=1(ei + fi) + ∆X


We will now prove that DR is indistinguishable from DSim through a sequence of hybrids.

• Hybrid 0: This is DR.

• Hybrid 1: In this hybrid, we will replace the real ciphertext y1 with a modified one. In other

139

words, we set:


K ∀ i ∈ [n] ki←$ Zλ

q , ei, fi←$ χ′m,u′
1←$ Zm

q

y1 = u′
1 + f1 +∆x1 ∀ i ∈ [2, n− 1] yi = A · ki + (ei + fi) + ∆xi

{yi}ni=2 yn = AK−
∑n−1

i=1 yi +
∑n

i=1(ei + fi) + ∆X


Now, we will show that if there exists an adversary B that can distinguish between Hybrid

0 and 1, then we can define an adversary A who can distinguish the two ensembles in the

Hint-LWE Assumption. Let us define A now.

A(A,y∗,k∗ = k+ r mod q, e∗ = e+ f)

Sample k2, . . . ,kn−1←$ Zλ
q

Sample e2, . . . , en←$ χ′m

Sample f2, . . . , fn←$ χ′m

Set K =
∑n−1

i=2 ki + k∗ mod q // implicitly, kn := r

∀ i ∈ {2, . . . , n− 1}, yi = Aki + ei + fi +∆xi

Set y1 = y∗ + fn +∆x1

Set yn := AK−
∑n−1

i=1 yi + e∗ +
∑n

i=2(ei + fi) + ∆ ·X

Run b′←$ B(K,y1, . . . ,yn)

return b′

We need to argue that the reduction correctly simulates the two hybrids, based on the choice

of y∗.

– If y∗ = Ak+e, then y1 is a valid encryption of x1 with key k and error (e+fn). Further,

it is easy to verify that yn satisfies the definition present in Hybrid 0.

– If y∗ = u for some random u. Then, we get that yn is of the prescribed format, while

also guaranteeing that y1 is generated as expected.

• Hybrid 2: In this hybrid, we will replace y1 with y1 that is sampled uniformly at random.

140


K ∀ i ∈ [n] ki←$ Zλ

q , ei, fi←$ χ′m,u1←$ Zm
q

u1 ∀ i ∈ [2, n− 1] yi = A · ki + (ei + fi) + ∆xi

{yi}ni=2 yn = AK− u1 −
∑n−1

i=2 yi +
∑n

i=1(ei + fi) + ∆X


Hybrid 1, and Hybrid 2 are identically distributed u′

1 is uniformly sampled and essentially

mask the values in y1 of Hybrid 1.

In Hybrids 3 and 4, we replace y2 with a random element u2, by using a similar logic. Therefore,

in Hybrid 2n− 2, the distribution will resemble DSim. This concludes the proof of simulatability.

Privacy against a semi-honest server. Here we prove privacy against an attacker corrupting

the server and a set of ηn clients (some of them can be helpers). Denote the simulator as Simp.

Here, the server acts semi-honestly. The formal proof proceeds through a sequence of hybrids. The

sequence of hybrids is similar to the work of Bell et al. [BBG+20]. Let H = [n]\C. Below, we detail

the hybrids.

• Hybrid 0: This is the real execution of the protocol where the adversary is interacting with

honest parties.

• Hybrid 1: This is where we introduce a simulator Sim which knows all the inputs and secret

keys involved, i.e., it knows the keys and the shares of all the clients. Sim runs a full execution

of the protocol with the adversary and programs the random oracle as needed. The view of

the adversary in this hybrid is indistinguishable from the previous hybrid.

• Hybrid 2: Our next step is for the simulator Sim to rely on the Special Honest Verifier Zero

Knowledge (SHVZK) property of all the proof systems to simulate the zero-knowledge proofs

for each honest client. Any non-negligible distinguishing advantage between Hybrids 1 and 2

will violate the SHVZK property of the underlying proof systems.

• Hybrid 3: In the next step, we rely on the hiding property of Pedersen commitments. Recall

141

that the hiding property guarantees that there is a negligible distinguishing advantage for an

adversary between an actual Pedersen commitment and a random group element. Therefore,

for all the honest clients, Sim can simply replace the commitments provided with a random

group element. Any non-negligible distinguishing advantage between Hybrids 2 and 3 will

violate the hiding property of the commitment scheme.

• Hybrid 4: In the next step, we rely on the privacy property of Shamir Secret Sharing. This

guarantees that any insufficient number of shares does not leak the privacy of the secret. In

this hybrid Sim uses this property to replace the shares of the honest user’s keys meant for the

corrupt helpers with random values. Recall that the number of corrupt helpers is strictly less

than the reconstruction threshold. Therefore, any non-negligible advantage in distinguishing

advantage between Hybrids 3 and 4 will imply that the statistical security of Shamir’s Secret

Sharing is broken.

Thus far, for the honest clients’ Sim has successfully generated all the contributions for the

honest users, except for the ciphertexts themselves. However, Sim cannot simply rely on the

semantic security of LWE encryption to replace with encryptions of random values. This is

because the output might differ from the real world. Instead, Sim, which has control of the

corrupted parties, simply instructs the corrupted parties to provide their inputs as 0. Then,

the output of the functionality is simply the sum of the honest clients’ inputs. Let us call it xH .

With this knowledge, Sim can generate its own choices of individual inputs for honest clients,

with the only constraint that the values necessarily need to sum up xH . This guarantees that

the output is correct.

• Hybrid 5: Sim now relies on the semantic security of LWE encryption, under leakage resilience

as argued earlier in this section, to instead encrypt these sampled values for honest clients.

Any non-negligible distinguishing advantage between Hybrids 4 and 5 will imply that the

LWE encryption is no longer semantically secure.

At Hybrid 5, it is clear that Sim can successfully simulate a valid distribution that does not rely on

142

the honest party’s inputs. This concludes the proof.

Robustness. Now we turn to proving robustness (and also showing privacy) when the adversary

corrupts only a set of ηn clients (some can be helpers). Here, the server follows the protocol but

can try to violate the privacy.

We denote the simulator here as Simr. Note that in the ideal world, Simr has to provide the inputs

for both the honest and corrupted clients. Meanwhile, in the real world, the inputs for the corrupted

clients come from the adversary, call it B. Note that B can choose these inputs with any restrictions.

Therefore, to ensure that it produces a valid set of inputs to the functionality in the ideal world,

Simr does the following:

• It invokes B by internally running it. Simr honestly follows the protocol, fixing the inputs for

the honest clients to be some valid vector X. To B, this is an expected run, and therefore, it

behaves exactly like in the real-world execution.

• Simr records the set of corrupted parties A and the set of dropout clients O encountered in

this internal execution.

• At some point, B provides the NIZK proofs to the server for adversarial clients. However,

Simr controls the server with these proofs including proof of Shamir sharing, proof of correct

encryption, range proofs, and the proof of binding of shares and the key.

• Using the Knowledge Soundness property of the NIZK proofs, Simr is able to extract the

witnesses, specifically the inputs for the adversarial clients.

• Finally, Simr also records whatever B outputs in the internal execution.

With these steps in place, Simr can simulate the ideal world.

• It sends the recorded O,A to the ideal functionality.

• It sends the extracted adversarial inputs for those clients, while sending the valid inputs for

143

the non-dropout honest clients.

• Note that the inputs in both the real-world and ideal-world match. We need to show that the

computed output matches too.

• Finally, Simr outputs whatever B had output in the internal execution.

It is clear that the output of Simr (in the ideal world) is indistinguishable from the output of B

(in the real world). However, we now need to argue that the output sum cannot differ at all.

Specifically, while it is guaranteed that the adversarial inputs are included in the sum in the real

world (as it was done in the internal execution of B). We need to show that the honest clients’

inputs cannot be dropped from the computed sum.

To see this, observe that the server only removes a client if there is a proof of the client misbehaving.

As a corollary, it implies that an honest party’s input is never rejected by the honest server as it

would not have proof of malicious behavior. This guarantees that any honest client’s inputs, which

hasn’t dropped out, is always included in the computed sum in the real world. In other words, the

computed sum in the real and ideal world have to match.

144

APPENDIX C

DEFERRED PROOF OF PIR CHAPTER

C.1 Deferred materials for impossibility results

Attack for linear PIR. We say that a PIR is linear if its encoding function is linear; that is, for

any two databases x and x′, Px+x′ = Px + P ′
x. Most multi-server PIR schemes (essentially linear

smooth locally decodable codes) considered in existing literature are linear.

Theorem C.1.1 (Attacks for linear PIR). Any linear PIR in the shuffle model, when the total

number of queries C is less than the database size n, has statistical security no better than n−C
n−1 .

At a high level, the attacker simply checks whether or not the value at a given index is determined

by the linear constraints imposed by the observed queries. Upon choosing a suitable basis for the

domain and range, a linear encoding function can be represented by a generating matrix, which we

denote as M. Let Mq denote the row vector corresponding to query q. We will show that when the

number of queries is less than n, we can narrow down the set of possible client queries by at least 1.

Lemma C.1.2. Let ei ∈ Fn denote the i-th standard basis vector. Let Qk
i denote the support of

Query(i;n). For every (q1, . . . , qk) ∈ Qk
i , we have ei ∈ span {Mq1 , . . .Mqk}.

Proof of Lemma C.1.2. Assume that ei is not in the span corresponding to q = (q1, . . . , qk) ∈ Qk
i .

Intuitively, this should mean that the i-th entry of the database cannot be fully determined by these

queries. We formalize this intuition in showing that there must exist a database on which Recon

fails.

First, we set some notation. Let V denote the vector space spanned by Mq1 , . . .Mqk . Let Mq be

the matrix formed by the subrows of M corresponding to the queries q.

Now we show that there must exist a vector w in the null space of Mq such that wi ̸= 0. We can

prove this by contradiction. Assume that for every w ∈ null(Mq), wi = 0. In other words, null(Mq)

145

is orthogonal to ei. Let Mq
′ be Mq with ei as an additional row. The previous observation ensures

that null(Mq) = null(Mq
′). By rank nullity, rank(Mq) = rank(Mq

′). We conclude that ei does

not add to the rank of Mq; therefore, ei can be written as a linear combination of Mq1 , . . . ,Mqk .

This contradicts our assumption that ei is not in the span of these vectors.

Finally, we show that Recon will fail with some positive probability. Let x ∈ Fn be some arbitrary

database. Let w be a vector in the null space of Mq such that wi ̸= 0. Then xi ̸= (x+ w)i. When

given the answers to these particular queries q1, . . . , qk, Recon cannot distinguish between x and

x+ w, yet they have different values at index i. Therefore, Recon must fail for at least one of x or

x+ w.

Proof of Theorem C.1.1. Applying the above lemma when the total number of queries is C < n, we

know that the span of the corresponding row vectors of M will be of dimension at most C, so there

will be at least n−C standard basis vectors ei1 , . . . ein−C missing from the span. i1, . . . , in−C must

not have been in the original set of client indices.

This leads to a natural candidate for a distinguisher. We will show an adversary which has advantage

at least n−C
n−1 in distinguishing between all-0 vector (0, . . . , 0) and all-i vector (i, . . . , i), when the

total number of queries is C < n. i is some particular index which will depend on the specific PIR.

The distinguisher. If ei /∈ span(Mq1 , . . . ,Mqk), then output 0; else output 1.

Claim. There exists i ∈ [n] such that the above distinguisher has advantage 1
n−1 between the all-0

vector and the all-i vector.

To see why this claim holds, notice that there are the following two cases:

• Case 0 (all-0 vector): in each realization of the queries, there is at least n− C indices whose

basis vectors are not in the span of the queries. Since there are n− 1 of these i’s, by linearity

of expectation, there must exist some i with probability at least n−C
n−1 of being excluded from

the span. For the said i, the probability the distinguisher outputs 0 is n−C
n−1 .

146

• Case 1 (all-i vector): by Lemma C.1.2, ei is in the span of each of the sharings of i. Therefore,

it is in the span of the aggregate of all the shares. The distinguisher outputs 0 with probability

0.

We conclude that the difference in probabilities of the two cases is n−C
n−1 .

C.2 Imperfect shuffling

Definition C.2.1 (Imperfect shuffler). A shuffler Π = {Πc}c∈N where each Πc is a distribution over

the symmetric group Sc is said to be at most ζ-imperfect if for all c,

max
X∼Πc

Pr[X = σ] ≤ ζ · Pr
Y∼Π̃c

[Y = σ]

where Π̃ = {Π̃c}c∈N is the uniform shuffler. In other words, a ζ-imperfect allows for the probability

of any particular shuffling to be at most a factor of ζ larger than the uniform case.

We now illustrate the robustness of the constructions to imperfect shuffling. In particular, if Π′

is ζ-imperfect for a constant ζ, then the statistical distance of our construction when Π′ is used

is at most ζ times the statistical distance when Π̃ is used. The following lemma shows this more

generically:

Lemma C.2.2. Consider any distributions DΠ and D′
Π that depend on a shuffler Π on group G.

Let Π̃ be the uniform shuffler on group G and Π′ be a ζ-imperfect shuffler. Then, SD(DΠ′ ,D′
Π′) ≤

ζ · SD(D
Π̃
,D′

Π̃
).

147

Proof.

SD(DΠ′ ,D′
Π′) =

∑
σ

Pr[Π′ = σ] · SD((D|σ,D′
|σ))

≤
∑
σ

ζ · Pr[Π̃ = σ] · SD((D|σ,D′
|σ))

= ζ
∑
σ

Pr[Π̃ = σ] · SD((D|σ,D′
|σ))

= ζ · SD(D
Π̃
,D′

Π̃
)

C.3 Complete security proof for Add-ShPIR (Theorem 3.5.1)

We now provide the full details of the security proof for Add-ShPIR—our generic composition that

uses any k-server PIR as OPIR and 2-additive PIR as IPIR. Recall that our proof outline consists

of three major steps; the subsequent subsections formally describe each of these steps.

C.3.1 Bounding the OPIR edit distance (proof of Lemma 3.5.2)

We start with the details for our first major proof step, namely bounding the edit distance between

the OPIR sub-queries. This only requires proving Lemma 3.5.2, which we do below.

Proof. When balls are thrown according to the distribution B, define Uα to be the random variable

for the number of balls thrown into bin α, and Ub,α to be the indicator variable that is 1 exactly

when the bth ball is thrown into bin α and 0 otherwise.

Note that Ub,α and Ub′,α are independent when b ̸= b′ the balls are thrown in a pairwise independent

fashion. Now, each Ub,α is a Bernoulli random variable with parameter 1/N . Therefore, E[Ub,α] =
1
N

and Var[Ub,α] =
1
N

(
1− 1

N

)
.

Now, by linearity of expectation, for all bins α, we have E[Uα] = B/N . Furthermore, since the

balls are thrown in a pairwise independent way, the variance is also linear, and therefore, Var[Uα] =

148

∑B
b=1Var[Ub,α] =

B
N ·

(
1− 1

N

)
. Therefore,

E[U2
α] = Var[Uα] + (E[Uα])

2 =
BN −B +B2

N2
.

Similarly define Vα and Vb,α when the balls are thrown according to distribution B′. Note that all

the above analysis also carries over for Vα. Now,

E[|Uα − Vα|] ≤
√
E[|Uα − Vα|2] =

√
E[U2

α + 2UαVα + V2
α]

=
√
E[U2

α] + 2E[Uα]E[Vα] + E[V2
α]

=

√
2BN − 2B

N2
≤

√
2B

N
.

where the first inequality is from the fact that (E[X])2 ≤ E[X2] for any random variable X, and the

third step is from linearity of expectation and the fact that Uα and Vα are independent.

Finally using the linearity of expectation again, we can compute the expected edit distance as:

Eu∼B,v∼B′ [ED(u,v)] =
1

2
E

[∑
α

|Uα − Vα|

]
≤ N

2

√
2B

N
=

√
BN

2
.

C.3.2 Bounding the edit distance of IPIR shares

We now provide details for our second major proof step on bounding the edit distance between the

IPIR shares. We start by showing that when looking at the final statistical distance, it is enough to

only consider parts that differ between u and v. In particular, we prove the following statement.

Lemma C.3.1. Consider ℓ ≥ 0 amd two (B,N)-valid configurations u and v. Then,

SD(Shareℓu, Shareℓv) ≤ SD(Shareℓu⊖v, Shareℓv⊖u)

Proof. Let fu, fv, fu⊖v, fv⊖u denote the probability mass functions of Shareku, Shareℓv, Shareℓu⊖v and

149

Shareℓv⊖u respectively. Define c = u⊓v and let fc be the probability mass function of Shareℓc. Now,

SD(Shareℓu, Shareℓv) =
1

2

∑
w
|fu(w)− fv(w)|

=
1

2

∑
w

∣∣∣∣∣∣
 ∑

w′≤w

fc(w ⊖w′)fu⊖v(w′)

−
 ∑

w′≤w

fc(w ⊖w′)fv⊖u(w′)

∣∣∣∣∣∣
by marginalization and since w′ and w⊖w′ deal with separate initial balls which would make their

sharing independent. We now get,

SD(Shareℓu, Shareℓv) =
1

2

∑
w

∣∣∣∣∣∣
∑

w′≤w

fc(w ⊖w′)
(
fu⊖v(w′)− fv⊖u(w′)

)∣∣∣∣∣∣
≤ 1

2

∑
w

∑
w′≤w

fc(w ⊖w′)
∣∣fu⊖v(w′)− fv⊖u(w′)

∣∣
=

1

2

∑
w′

∣∣fu⊖v(w′)− fv⊖u(w′)
∣∣ ∑
w≥w′

fc(w ⊖w′)


≤ 1

2

∑
w′

∣∣fu⊖v(w′)− fv⊖u(w′)
∣∣ · 1

= SD(Shareℓu⊖v, Shareℓv⊖u)

This allows us to restrict our attention to only u⊖v and v⊖u which are (δ,B)-valid configuration.

We will now find the edit distance after splitting each of the δ balls into two additive shares.

Formally, we show the following lemma:

Lemma C.3.2. Consider two (δ,N)-valid configurations u and v. Then,

E[ED(Shareu, Sharev)] ≤
√
2δN.

Proof. When balls are thrown according to the distribution Shareu, define Uα as the random variable

150

for the number of balls thrown into bin α. Define Vα for distribution Sharev. First observe by

linearity of expectation that:

E[ED(Shareu, Sharev)] =
1

2

∑
α

E [|Uα − Vα|]

Now, to find the distribution of Uα, we need to find when additively splitting a ball results in an

addition to the bin α. Let (b1, . . . , bδ) denote the vector of balls in u, and define Ui,α to be the

number of additive shares of ball bi that go into bin α. Observe that for any particular α, all Ui,α

are independent and that Uα =
∑δ

i=1Ui,α. Now, consider two cases for each ball bi, and a bin α:

1. bi = α+α (in the group G). In this case, if the first additive share of bi is sampled as α, then

both additive shares will go into bin α; otherwise no share will go into bin α. This means that

Ui,α ∼ 2 · Ber(1/N).

2. bi ̸= α+ α (in the group G). In this case, if the first additive share of bi is sampled either as

α or bi − α, then exactly one of the additive shares will go into bin α; otherwise no share will

go into bin α. This means that Ui,α ∼ Ber(2/N).

Assume that there are λu,α balls that satisfy the first case and δ−λu,α balls that satisfy the second

case. Using the fact that the Ui,α are independent, we can now compute the distribution of Uα as:

Uα ∼ 2 · Binomial(λu,α, 1/N) + Binomial(δ − λu,α, 2/N).

Consequently, the following hold:

E[Uα] =
2λu,α

N
+

2(δ − λu,α)

N
=

2δ

N
.

Var[Uα] = 4λu,α
N − 1

N2
+ (δ − λu,α)

2(N − 2)

N2
=

2Nλu,α + 2Nδ − 4δ

N2
.

151

Similarly, we can compute

E[Vα] =
2δ

N
and Var[Vα] =

2Nλv,α + 2Nδ − 4δ

N2
.

where λv,α is the number of balls in v that are equal to α + α (in group G). Now applying the

Jensen’s inequality E[Z] ≤
√

E[Z2] to the random variable |Uα − Vα|, we get:

E[|Uα − Vα|] ≤
√

E[(Uα − Vα)2] =
√
E[(Uα)2] + E[(Vα)2]− 2 · E[Uα] · E[Uα]

=

√
2Nλu,α + 2Nδ − 4δ + 4δ2

N2
+

2Nλv,α + 2Nδ − 4δ + 4δ2

N2
− 8δ2

N2

=

√
2λu,α + 2λv,α + 4δ

N
− 8δ

N2

≤
√

2λu,α + 2λv,α + 4δ

N

≤
√

8δ

N

since 0 ≤ λu,α, λv,α ≤ δ (in fact, we have
∑

α λu,α ≤ δ). Therefore, we can now compute the edit

distance as follows:

ED(Shareu, Sharev) =
1

2

∑
α

E[|Uα − Vα|] ≤
N

2
·
√

8δ

N
=
√
2δN.

Combining this with the result from Lemma 3.5.2, we can now compute the expected edit distance

when u and v follow a distribution instead of being fixed.

Eu∼B,v∼B′ [ED(Shareu⊖v, Sharev⊖u)] ≤
√
2N · Eu∼B,v∼B′

[√
ED(u,v)

]
≤
√
2N

(
BN

2

)1/4

= (2)1/4B1/4(N)3/4

where the second step is by the concave Jensen’s inequality.

152

C.3.3 Bounding the final statistical distance

Before we bound the final statistical distance, we introduce a useful result from Boyle et al. [BGIK22].

Lemma C.3.3 ([BGIK22]). Consider ℓ balls thrown into N bins (labeled using [N] without loss

of generality) independently and uniformly at random. Let Uα denote the final distribution of the

configuration after another ball is added into bin α. Then, for all bins α and α′, SD(Uα,Uα′) ≤
√

N
ℓ .

While the original result in [BGIK22] is stated in terms of removing a ball either from bin α or α′,

we note that our formulation is equivalent since the statistical distance does not change by adding

the same balls (one each in the two bins) to both distributions.

A more general bound for adding δ balls can also easily be derived. Suppose that we use the

notation Sℓ(δ) to denote the maximum statistical distance when δ balls are added after throwing

ℓ balls independently and uniformly at random. In particular, for Υ = (υ1, . . . , υδ) ∈ [N]δ, let

UΥ denote the distribution when after throwing ℓ balls, a ball is added to each bin υi; Then

Sℓ(δ) = maxΥ,Υ′ SD(UΥ,UΥ′). By hopping one ball at a time, we can use Lemma C.3.3 to directly

conclude that Sℓ(δ) ≤ δ ·
√
N/ℓ.

We are now ready to bound the final statistical distance. Applying Markov’s inequality to the result

from the previous section, we get:

Pr
u∼B,v∼B′

[
ED(Shareu⊖v, Sharev⊖u) ≥ γ ·B1/4+τN1/8

]
≤

4
√
2 ·B1/4N3/4

γ ·B1/4+τN1/8
≤ 2 ·N5/8

γ ·Bτ
.

Define this probability as ρτ . As the final step, we can now use Lemma C.3.1 and Lemma C.3.3 to

153

compute the final statistical distance. Using τ = 1/8 and ℓ = γ4B, we get:

SD(Shareℓu, Shareℓv) ≤ SD(Shareℓu⊖v, Shareℓv⊖u)

≤ (1− ρτ) · Sℓ(B1/4+τN1/8) + ρτ · Sℓ(B)

≤ 1 · γB1/4+τN1/8 ·
√

N

ℓ
+

2 ·N5/8

γBτ
· 1

=
N5/8

γB1/4−τ
+

2 ·N5/8

γBτ
≤ 3 ·N5/8

γB1/8
.

Casting this back to our PIR context, since we have N = |QIPIR| bins and B = kC balls, and ℓ = B,

the final statistical distance is bounded by 3|QIPIR|5/8

(kC)1/8
. Recall that in Section 3.5.4, we can make

|QIPIR| = Θ(n), where n is the database size. Therefore, for all ϵ = ϵ(n) ≥ 0, there exists a constant

d such that given C ≥ 1
ϵ8
· dn5

k honest clients queries, the statistical distance is bounded by ϵ.

Notice that there is an interesting trade-off between the number of clients required and the random

noise used per client. By having each client provide γ times more noise queries, the statistical

distance is reduced by a factor of 4
√
γ, which in turn reduces the number of clients required by a

factor of (4
√
γ)8 = γ2.

C.3.4 Cost analysis

As in Theorem 3.5.1, k,Q,A are all functions of n. Below we write e.g., k(n) as k for simplicity. To

analyze the cost, we need to first analyze the size of x′ in Construction 3.5.1. Let σ be the size of

x′.

• When the OPIR servers have different Answer algorithms, the IPIR database x′ has k ·Q entries,

each of A bits. Here σ = kQ.

• When the OPIR servers have the same Answer algorithm, the size x′ is simply Q, each entry

of x′ is of A bits. Here σ = Q.

Per-query communication. To issue a query to the original n-bit database, the client sends 3k

messages in total (2k messages for shares of OPIR sub-queries and k dummies). Each message is an

IPIR sub-query, therefore the query size for ShPIR is O(k · log σ), and the answer size is O(kAσ1/2).

154

The communication cost is dominated by the answer size, hence O(kAσ1/2). When σ = kQ, the

communication is O(k3/2 ·A ·Q1/2); when σ = Q, the communication is O(k ·A ·Q1/2).

Per-query computation. Assuming preprocessing, the server computation is the number of bits

it reads, which is simply the answer size. So the computation is the same as above.

Server storage. To preprocess a size-σ database in the two-server additive PIR protocol (Fig-

ure 3.2.1), the server chooses the parameter m′ for IPIR and a constant c such that m′ = c · log σ.

So the sub-query space of IPIR, namely QIPIR, has size 2m
′
= σc (and consequently the number of

entries in the lookup table). We can in fact use a more fine-grained choice of m′, so that the size of

QIPIR is Õ(σ); we provide details in Appendix C.5.

Each entry in the lookup table is an answer polynomial with the number of bits Aσ1/2. Putting

these together, the server storage, including the preprocessing bits, is Õ(A · σ3/2). If σ = kQ, then

the storage is Õ(A · k3/2 ·Q3/2); if σ = Q, then the storage is Õ(A ·Q3/2).

C.4 Complete security proof for s-CNF-ShPIR (Theorem 3.5.3)

We now provide details for analyzing the construction where CNF-sharing is used for IPIR instead

of 2-additive sharing. The basic structure of the proof is quite similar; notice that among the three

major proof steps for Theorem 3.5.1, only the second part needs to be changed to reflect the CNF-

sharing. This essentially requires analysis on how the balls in a configuration u get split into new

balls corresponding to the CNF shares.

Definition C.4.1 (Cyclic rotations). For a vector α = (α1, . . . , αs), define its γ-cyclic rotation

(0 ≤ γ < s) as the vector α(γ) = (αγ+1, . . . , αs, α1, . . . , αγ) where α0 is defined to be αs.

CNF-sharing details. Consider a (δ,N)-valid configuration u where the bins are labeled using

elements in G. For a given ball b, the s-CNF sharing procedure is as follows: First b is randomly

split into s additive shares β = (β1, . . . , βs); i.e., β1, . . . , βs−1 are first independently and uniformly

sampled from G, and then βs is set to b −
∑s−1

i=0 βi. Now, the s-CNF shares are defined to the

cyclic rotations of β where the last element is dropped. In particular, the CNF-shares of β are

α(0), . . . , α(s−1) where α(i) = (βi+1, . . . , βs, β1, . . . , βi−1) and β0 is defined to βs.

155

C.4.1 Balls-and-bins analysis for CNF-shares

Notice that CNF-share is a vector in Gs−1, and consequently, there are N s−1 bins within which

the ball corresponding to each CNF-share can lie. Our goal now, very abstractly, is to understand

the conditions under which one (or more) of the s balls corresponding to the CNF-shares resultant

from splitting a ball b in u fall into a particular bin α ∈ Gs−1. This involves taking into account

the symmetries of the CNF-shares towards which, we introduce some useful definitions.

Definition C.4.2 (Cyclic symmetries). For a vector α = (α1, . . . , αs), define the number of cyclic

symmetries of α, denoted by SymCyc(α), as the number of cyclic rotations α(γ) where (0 ≤ γ < s)

that are equal to α. Further, define the number of distinct cyclic rotations, denoted by DistCyc(α),

as the cardinality of the set {α(γ) | 0 ≤ γ < s}.

Lemma C.4.3. For any α = (α1, . . . , αs), it holds that SymCyc(α) · DistCyc(α) = s.

Proof. The proof is quite straightforward using a group theoretic formulation. Notice that the

group of cyclic rotations of is isomorphic to the group Zs under addition modulo s; intuitively

γ ∈ Zs will correspond to a γ-cyclic rotation. Let c be the smallest positive integer such that

α(c mod s) = α. Then for all α(γ) = α, notice that γ ∈ ⟨c⟩ (the subgroup of Zs generated by c) which

is therefore of size exactly SymCyc(α). Further, the number of cosets of ⟨c⟩ in Zs is exactly the

number of distinct cyclic rotations DistCyc(α). Therefore, by Lagrange’s theorem, we directly have

SymCyc(α) · DistCyc(α) = s.

Now, coming back to the CNF-sharing problem at hand, consider a (δ,N)-valid configuration u.

Define s-CNF-Shareu to be the distribution of the balls-and-bins configuration when each ball in u

is split into s-CNF shares. Note that we only need to consider (δ,N)-configurations since the proof

of Lemma C.3.1 also directly works for s-CNF-Share. We now show the following lemma.

Lemma C.4.4. Consider a (δ,N)-valid configurations u and v. Then,

ED(s-CNF-Shareu, s-CNF-Sharev) ≤ sN (s−1)/2
√
δ.

156

Proof. Analyzing s-CNF-Shareu essentially boils down to two parts:

1. What is the probability that that a ball b will lead to a CNF-share α (or equivalently, a ball

in bin α within s-CNF-Shareu) (notice that the random variable will be Bernoulli and so we

only need to find the probability).

2. Due to the symmetries of CNF-sharing, when one CNF-share is α, how many more shares will

also be exactly α? In other words, if a ball lands in bin α, does this force any other balls to

also land in α? (for instance, in the 2-additive sharing, when we had b = 2α for a ball b and

bin α, if one additive share was α, then the other share would also be α).

Let Uα represent the random variable for the number of balls in bin α for the distribution s-CNF-Shareu.

As in the proof for Theorem 3.5.4, we wish to find E[Uα] and Var[Uα] and use them to bound the

edit distance between s-CNF-Shareu and s-CNF-Sharev for any two u and v.

For 1 ≤ τ ≤ s and α ∈ Gs−1, let λu,τ,α denote the number of balls bi in u such that for the vector

α∗ = (α1, . . . , αs−1, bi−
∑

i αi), it holds that SymCyc(α∗) = τ , and consequently DistCyc(α∗) = s/τ

(from Lemma C.4.3). First notice that
∑

τ λu,τ,α = δ since each ball will in some SymCyc(α) value

from 0 to s.

Now, SymCyc(α∗) exactly corresponds to the number of CNF-shares that will fall into bin α if one

CNF-share for the ball bi is α. In addition, the probability that a CNF-share for bi is α is exactly

the number of distinct cyclic rotations divided by the number of bins, i.e., DistCyc(α∗)
Ns−1 .

The number of balls added to bin α by each CNF-share of a ball in u is a Bernoulli random variable

with probability DistCyc(α∗)
Ns−1 ; Uα is just the sum of all these Bernoulli random variables. However,

the symmetries of the CNF-sharing will create dependence between these random variables; this

happens exactly for SymCyc(α∗) number of variables, leading to their sum being distributed as

SymCyc(α∗)Ber ·
(

DistCyc(α∗)
Ns−1

)
. After accounting for these symmetries, the rest of the random vari-

ables are all independent.

We can now add all the Bernoulli random variables corresponding to all the balls bi that result in

157

the same DistCyc(α∗) (which from Lemma C.4.3 also means the same SymCyc(α∗)) to get a binomial

distribution with the same probability. Consequently, the distribution of Uα can be given by:

Uα ∼
∑
τ

τ · Binom(λu,τ,α,
s/τ

N s−1
).

Notice that this also cleanly captures the distribution resultant from the two-additive sharing. Now,

we can compute the expectation and variance as:

E[Uα] =
∑
τ

sλu,τ,α

N s−1
=

sδ

N s−1

Var[Uα] =
∑
τ

τ2 · λu,τ,α ·
s

τN s−1
·
(
1− s

τN s−1

)
≤ s

N s−1

∑
τ

τλu,τ,α · 1

≤ s

N s−1
· sδ =

s2δ

N s−1

since
∑

τ τλu,τ,α is maximized when λu,s,α = δ and the other λu,τ ̸=s,α = 0.

Similarly, for any other another (δ,N)-valid v, we can compute:

E[Vα] =
sδ

N s−1
and Var[Vα] ≤

s2δ

N s−1

Now applying the Jensen’s inequality E[Z] ≤
√
E[Z2] to the random variable |Uα − Vα|, we get:

E[|Uα − Vα|] ≤
√
E[(Uα − Vα)2] =

√
E[(Uα)2] + E[(Vα)2]− 2 · E[Uα] · E[Uα]

≤

√(
sδ

N s−1

)2

+
s2δ

N s−1
+

(
sδ

N s−1

)2

+
s2δ

N s−1
− 2s2δ2

N2s−2

=

√
2s2δ

N s−1
=

√
2s

N (s−1)/2
·
√
δ.

158

Therefore, we can now compute the edit distance as follows:

ED(s-CNF-Shareu, s-CNF-Sharev) =
1

2

∑
α

E[|Uα − Vα|]

≤ N s−1

2
·
√
2s

N (s−1)/2
·
√
δ

≤ sN (s−1)/2
√
δ.

Combining this with the result from Lemma 3.5.2, we can now compute the expected edit distance

when u and v follow a distribution instead of being fixed.

Eu∼B,v∼B′ [ED(s-CNF-Shareu⊖v, s-CNF-Sharev⊖u)] ≤
√
2N · Eu∼B,v∼B′

[√
ED(u,v)

]
≤ sN (s−1)/2

(
BN

2

)1/4

≤ sN (2s−1)/4B1/4.

where the second step is by the concave Jensen’s inequality. Now, using Markov’s inequality, we get

Pr
u∼B,v∼B′

[ED(s-CNF-Shareu⊖v, s-CNF-Sharev⊖u) ≥
√
sN (2s−3)/8B1/4+τ] ≤

√
s ·N (2s+1)/8

B1/4+τ
.

Define this probability as ρ′τ . Taking the total number of extra balls ℓ = B, and τ = 1/8,

SD(s-CNF-Shareℓu, s-CNF-Shareℓv) ≤ SD(s-CNF-Shareℓu⊖v, s-CNF-Shareℓv⊖u)

≤ (1− ρ′τ) · Sℓ(
√
sN (2s−3)/8B1/4+τ) + ρ′τ · Sℓ(sB)

≤ 1 ·
√
sN (2s−3)/8B1/4+τ ·

√
N

ℓ
+

√
s ·N (2s+1)/8

B1/4+τ
· 1

=

√
s ·N (2s+1)/8

B1/4−τ
+

√
s ·N (2s+1)/8

Bτ
≤ 2
√
s ·N (2s+1)/8

B1/8
.

159

C.5 Proof for the concrete construction (Theorem 3.5.4)

Before we give the full proof, we first prove a small lemma below, which provides a way to bound

the size of sub-query space in 2-additive PIR within polylogarithmic overhead of the database size.

Lemma C.5.1. For any n ∈ N and n ≥ 4, there always exists a constant c∗ such that

(
log n+ c∗ log logn+ 1

(log n+ c∗ log log n+ 1)/2

)
≥ n.

Proof. By Stirling formula, we have

(
log n+ c∗ log log n+ 1

(log n+ c∗ log log n+ 1)/2

)
≥ 2
√
2π

e2
· 2logn+c∗ log logn+1

√
log n+ c∗ log log n+ 1

.

To ensure the equation in the lemma holds, it is sufficient to ensure

n · (log n)c√
log n+ c∗ log log n+ 1

≥ n.

Following above, it is sufficient to ensure

(log n)c
∗
> 3 log n,

and we know this is equivalent to c∗ > 1
2 · (1 + log 3

log logn). Assume n ≥ 4, then such constant c∗

exists.

Cost analysis. Following the parameter choice specified in Section 3.5.4, we already have the set

of parameters for OPIR and IPIR that compile. The only thing left is to choose k,m, d, t, |F| for

OPIR (Reed-Muller PIR) and s,m′, d′ for IPIR (CNF PIR) based on a given constant γ.

IPIR database size. First, let m = 2/γ, then k and |F| are both O(nγ/2). According to parameter

choice specified in Section 3.5.4, the IPIR database x′ (before preprocessing) has the number of

entries Θ(n).

160

IPIR preprocessing. Choose s = 2/γ. Each answer in IPIR consists of O(n1/s) monomials with

coefficients represented by log |F| bits, so it has the number of bits O(nγ/2 log n).

Now we want to bound the number of entries in the lookup table in the IPIR preprocessing. Let c∗

be a constant; we choose m′ = log n′+ c∗ log log n′+1 and d′ = m′/2 = (log n′+ c∗ log logn′+1)/2.

By Lemma C.5.1, the choice of m′ results in |QIPIR| = 2m
′
= Õ(n); this is also the entries in the

lookup table. Plug in the answer size of IPIR above, the total number of preprocessing bits (i.e., the

server storage) is Õ(n1+γ/2).

Communication and computation. For each query, the client sends k ·(s+1) messages, each message

of Θ(log n) bits. Therefore the query size of ShPIR is O(nγ/2 log n). The answer to a query consists

of k ·(s+1)·s messages, each message of O(nγ/2 log n) bits; so the answer size of ShPIR is O(nγ log n).

Since answering each query is just a table lookup, the number of bits that the server needs to read

(computation cost) is exactly the same as the answer size.

A final complication is that we can get rid of the log n term by choosing a constant 2
2/γ−γ/2+1 <

γ′ < γ, and then set all parameters as above using γ′ instead of γ. This results in per-query

communication and computation both O(nγ), and the server storage is O(nγ′/2+2/γ′−1), which is

bounded by O(n2/γ) since γ′/2 + 2/γ′ − 1 < γ/2 + 2/γ′ − 1 < 2/γ given the restrictions on γ′ as

above.

Total number of queries for security. We use Theorem 3.5.3 and plug in parameters for OPIR.

Select parameters as described in Section 3.5.4, and let m = γ/2 and s = 2/γ as above, then the

Q = |QOPIR| = c1 · n, and k = c2 · nγ/2 for where c1, c2 are constant. Using Theorem 3.5.3, we

have Q2s+1/kϵ8 = (c2s+1
1 /c

γ/2
2) · n4/γ−γ/2+1/ϵ8. Let c0 = (c

4/γ+1
1 /c

γ/2
2), we have proved that for all

C ≥ c0n
4/γ+1/ϵ8, the composed construction has security ϵ.

The final complication is that we need to choose γ′ < γ in terms of efficiency (as we did for the

communication cost above), therefore the resulting term is c · n4/γ′−γ′/2+1. This is asymptotically

smaller than n4/γ if we choose γ′ < γ such that 4/γ′ − γ′/2 < 4/γ. Note that the restriction on γ′

is equivalent to g(γ′) = γ · γ′2 + 8γ′ − 8γ > 0, and such γ′ exists because g(γ) = γ3 > 0 and g is

161

continuous.

C.6 Deferred Material on PIR with Variable-Sized Records (Section 3.6)

Trade-off between security and efficiency. If c is 0, then in the construction in Figure 3.6.1, one

can easily tell between the two input configurations, say (32, 2) and (16, 18). This is because with

probability 1/2, there is one ball at level 5 for the former case, while in the latter case there is always

no ball at level 5. In fact, a more generic example is (S−C+1, 1, 1, . . . , 1) and (S/C, S/C, . . . , S/C)

(both cases sums up to S), and the latter always has no ball at the level higher than logL− logC.

Therefore, we fully split the balls at the first few levels; and then do the probabilistic splitting. We

call the highest level that has probabilistic splitting as the full-split level ; the number of levels where

balls are fully split is depth of the full-split level. We next show that, if there are many balls at

the full-split level, then after the probabilistic splitting, those balls can “smooth out” the different

configurations at the lower levels.

In our construction (Figure 3.6.1), we need logC < ρ < c logL for constant 0 < c < 1. Let

d = ρ/ logC; then from above Cd should be much smaller than L. Therefore, we restrict C to be

O(polylogL) for the of analysis of our construction.

Proof of Theorem 3.6.2

Same as our proof of Theorem 3.5.1 (Section 3.5.1), the shuffler completely eliminates the order of

sub-lengths. Therefore, the security analysis reduces to understanding the distribution of balls over

the logL levels; again we view this as a balls-to-bins problem.

Our proof consists of two steps. First, we show that if there are sufficiently many balls at the

highest level, these balls can “smooth out” the differences in the lower levels after the recursive

splitting, even if the configurations of the lower levels are different. More formally, given two

different configurations at level lower than j, place k balls at level j, then after the splitting, the

resulting distributions are statistically close if the the edit distance between the two configurations

is much smaller than k.

162

Next we show that, for any input configurations, at the full-split level, there are sufficiently many

balls there. In particular, we prove that the minimum number of balls one can have is not much

smaller than the maximum possible number of balls, conditioning on the sum of all the configurations

being equal. And combined with a special configuration where there are 2ρ balls at the full-split

level, this completes our proof.

Lemma C.6.1 (Smoothing Lemma). Given k, r such that 0 < r <
√
k, consider placing k balls at

level j v.s. placing k − r balls at level j and place 2r balls at level j − 1. Let D0 be the distribution

of balls after randomized splitting starting with the first configuration; similarly Dr for the second

configuration. Then there exists a constant c > 0 such that

SD(D0,Dr) ≤ c · r/
√
k.

Proof. We start with a simple case where r = 1.

SD(D0,D1) ≤(
1

2
)k

+

∣∣∣∣(k1
)
(
1

2
)k −

(
k − 1

0

)
(
1

2
)k−1

∣∣∣∣
+

∣∣∣∣(k2
)
(
1

2
)k −

(
k − 1

1

)
(
1

2
)k−1

∣∣∣∣
+ . . .

+

∣∣∣∣(k

k − 1

)
(
1

2
)k −

(
k − 1

k − 2

)
(
1

2
)k−1

∣∣∣∣
+

∣∣∣∣(kk
)
(
1

2
)k −

(
k − 1

k − 1

)
(
1

2
)k−1

∣∣∣∣
≤
(

k

k/2

)
(
1

2
)k = Θ(

1√
k
).

The same idea applies to any r <
√
k. We have

163

SD(D0,Dr) ≤(
1

2
)k · (

(
k

0

)
+ . . .+

(
k

r

)
)

+

∣∣∣∣(kr
)
(
1

2
)k −

(
k − r

0

)
(
1

2
)k−r

∣∣∣∣
+

∣∣∣∣(k

r + 1

)
(
1

2
)k −

(
k − r

1

)
(
1

2
)k−r

∣∣∣∣
+ . . .

+

∣∣∣∣(kk
)
(
1

2
)k −

(
k − r

k − r

)
(
1

2
)k−r

∣∣∣∣
≤2r ·

(
k

k/2

)
(
1

2
)k ≤ c · 2r√

k
for some constant c > 0.

Lemma C.6.2 (Bounding the differences at every level). Given any two configurations with equal

sum, then at every level, the maximum number of balls and the minimum number of balls differ at

most C.

Proof. Let the sum be S and the number of clients be C. Now consider the balls-to-bins configuration

of all the clients.

The maximum number of balls above the k-th level is C(2k−1 + . . . 20) = C(2k − 1), as for each

client, each level has at most one ball. So in this case, the number of balls at the k-th level is
S−C(2k−1)

2k
= S

2k
− C + C

2k
.

In the other case, the minimum number of balls below the k-th level is 0; then in this case the k-th

level has the number of balls S/2k.

Therefore, the difference is C − C
2k

, which is smaller than C.

Analysis of message complexity. Now we can analyze, for a given security ϵ, and C clients, what is

trade-off ρ we need (this affects the message complexity). Note that here we analyze for a single

client; this is different from the all-client case in the proof of Lemma C.6.2 above.

164

As the analysis in the beginning of Appendix C.6, let d = ρ/ logC. By union bound, we can

derive the relation between a target security error ϵ and the depth of full-split level ρ. That is,

(logL · logC)/
√
Cd ≤ ϵ, where a sufficient equation is Cd−1 ≥ 1/ϵ2.

Now we want to compute the message complexity. Suppose the record is of length ℓ, if there is only

one ball at level log ℓ, then in expectation there will be log ℓ balls in the end. Also, each ball at a

given level is independently split. So we only need to analyze how many balls fall in the full-split

level.

• If log ℓ < logL − ρ, namely the record length is small, then from above we immediately get

the message complexity being log ℓ.

• If log ℓ ≥ logL− ρ, then all the balls between the (logL− ρ)-th level and the (log ℓ)-th level

have to be fully split. This means there are at most 2ℓCd/L balls land in the full-split level.

Therefore, in expectation there are 2ℓCd log ℓ/L ≤ 2Cd log ℓ balls at the end. Recall that to

ensure security ϵ, we need Cd−1 ≥ 1/ϵ2. Combining the two inequalities, we have message

complexity h ≥ (2C · log ℓ)/ϵ2. When C = polylogL, then the overhead (message complexity)

is just polylogL/ϵ2; note that this is also polylogℓ/ϵ2.

165

BIBLIOGRAPHY

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems. Technical report, 2015.
https://www.tensorflow.org/.

[ABIW22] Sebastian Angel, Andrew J. Blumberg, Eleftherios Ioannidis, and Jess Woods. Effi-
cient representation of numerical optimization problems for SNARKs. In Proceedings
of the USENIX Security Symposium, 2022.

[ACD+21] Erik Anderson, Melissa Chase, Wei Dai, F. Betul Durak, Kim Laine, Siddhart Sharma,
and Chenkai Weng. Aggregate measurement via oblivious shuffling. Cryptology ePrint
Archive, Paper 2021/1490, 2021. https://eprint.iacr.org/2021/1490.

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with compressed
queries and amortized query processing. In In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 962–979, 2018.

[AGJ+22] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychroni-
adou. Prio+: Privacy preserving aggregate statistics via boolean shares. In Clemente
Galdi and Stanislaw Jarecki, editors, Proceedings of the International Conference on
Security and Cryptography for Networks(SCN), 2022.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Annual International Cryptology Conference, pages 92–110. Springer,
2007.

[AIK+21] Shweta Agrawal, Yuval Ishai, Eyal Kushilevitz, Varun Narayanan, Manoj Prab-
hakaran, Vinod M. Prabhakaran, and Alon Rosen. Secure computation from one-way
noisy communication, or: Anti-correlation via anti-concentration. In Proceedings of
the International Cryptology Conference (CRYPTO), pages 124–154, 2021.

[AIVG22] Kinan Dak Albab, Rawane Issa, Mayank Varia, and Kalman Graffi. Batched Dif-
ferentially Private Information Retrieval. In Proceedings of the USENIX Security
Symposium, pages 3327–3344, 2022.

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern.

166

https://www.tensorflow.org/
https://eprint.iacr.org/2021/1490

Bingo: Adaptivity and asynchrony in verifiable secret sharing and distributed key
generation. In Proceedings of the International Cryptology Conference (CRYPTO),
2023.

[ALP+21] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. Communication-computation trade-offs in PIR. In Pro-
ceedings of the USENIX Security Symposium, pages 1811–1828, 2021.

[AMBFK16] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
XPIR: Private information retrieval for everyone. In Proceedings of the Privacy En-
hancing Technologies Symposium (PETS), July 2016.

[ANOS24] Bar Alon, Moni Naor, Eran Omri, and Uri Stemmer. Mpc for tech giants (gmpc):
enabling gulliver and the lilliputians to cooperate amicably. In Annual International
Cryptology Conference, pages 74–108. Springer, 2024.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3), October 2015.

[APY20] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder - scalable, robust anony-
mous committed broadcast. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 1233–1252, 2020.

[AS16] Sebastian Angel and Srinath Setty. Unobservable communication over fully untrusted
infrastructure. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 551–569, 2016.

[ASA+21] Ishtiyaque Ahmad, Laboni Sarker, Divyakant Agrawal, Amr El Abbadi, and Trinabh
Gupta. Coeus: A system for oblivious document ranking and retrieval. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), 2021.

[AYA+21] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trinabh
Gupta. Addra: Metadata-private voice communication over fully untrusted infras-
tructure. In 15th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 21), 2021.

[BBCG+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Lightweight techniques for private heavy hitters. In In Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P), 2021.

[BBDBM18] Benedikt Bunz, Jonathan Bootle, Pieter Wuille Dan Boneh, Andrew Poelstra, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
In Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2018.

[BBG+20] James Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana

167

Raykova. Secure single-server aggregation with (poly) logarithmic overhead. In Pro-
ceedings of the ACM Conference on Computer and Communications Security (CCS),
2020.

[BBG23] Borja Balle, James Bell, and Adrià Gascón. Amplification by shuffling without shuf-
fling, 2023. https://arxiv.org/pdf/2305.10867.pdf.

[BBGN20] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. Private summation in the
multi-message shuffle model. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2020.

[BCGL+24] James Bell-Clark, Adrià Gascón, Baiyu Li, Mariana Raykova, and Phillipp Schopp-
mann. Willow: Secure aggregation with one-shot clients. Cryptology ePrint Archive,
2024.

[BCI+10] Eric Brier, Jean-Sebastien Coron, Thomas Icart, David Madore, Hugues Randriam,
and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves.
In Proceedings of the International Cryptology Conference (CRYPTO), 2010.

[BEM+17] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. PROCHLO: Strong Privacy for Analytics in the Crowd. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), 2017.

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic
primitives based on hard learning problems. In Annual international cryptology con-
ference, pages 278–291. Springer, 1993.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Pro-
ceedings of the International Cryptology Conference (CRYPTO), 2014.

[BGIK22] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable Dis-
tributed Point Functions. In Proceedings of the International Cryptology Conference
(CRYPTO), 2022.

[BGL+22] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana
Raykova, and Cathie Yun. Acorn: Input validation for secure aggregation. Cryptology
ePrint Archive, Paper 2022/1461, 2022. https://eprint.iacr.org/2022/1461.

[BGR98] Mihir Bellare, Juan A Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Advances in Cryptology—EUROCRYPT’98:
International Conference on the Theory and Application of Cryptographic Techniques
Espoo, Finland, May 31–June 4, 1998 Proceedings 17, pages 236–250. Springer, 1998.

168

https://arxiv.org/pdf/2305.10867.pdf
https://eprint.iacr.org/2022/1461

[BHB20a] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. ABIDES: Agent-based
interactive discrete event simulation environment. https://github.com/abides-sim/
abides, 2020.

[BHB20b] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. ABIDES: Towards high-
fidelity multi-agent market simulation. In Proceedings of the 2020 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, 2020.

[BHK+24] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin. Sprint:
High-throughput robust distributed schnorr signatures. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 62–91.
Springer, 2024.

[BIK05] Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. General constructions for
information-theoretic private information retrieval. In Journal of Computer and Sys-
tem Sciences, 2005.

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H.Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving machine learning. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS), 2017.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the Servers’ Computation
in Private Information Retrieval: PIR with Preprocessing. In Proceedings of the
International Cryptology Conference (CRYPTO), 2000.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In Proceedings of the Theory of Cryptography Conference
(TCC), 2017.

[Boo17] Jonathan Bootle. Efficient multi-exponentiation, 2017. https://jbootle.github.io/
Misc/pippenger.pdf.

[BVH+20] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor fed-
erated learning. In Proceedings of the Artificial Intelligence and Statistics Conference
(AISTATS), 2020.

[Cao24] Dennis Cao. Ai helped the u.s. government recover $1 billion in fraud
in 2024—and it’s just getting started. https://cdotimes.com/2024/10/17/
ai-helped-the-u-s-government-recover-1-billion-in-fraud-in-2024-and-its-just-getting-started/,
2024. Accessed: 2025-05-03.

[CCSL24] Lynn Chua, Hao Chen, Yongsoo Song, and Kristin Lauter. On the concrete security
of lwe with small secret. La Matematica, 3(3):1032–1068, 2024.

169

https://github.com/abides-sim/abides
https://github.com/abides-sim/abides
https://jbootle.github.io/Misc/pippenger.pdf
https://jbootle.github.io/Misc/pippenger.pdf
https://cdotimes.com/2024/10/17/ai-helped-the-u-s-government-recover-1-billion-in-fraud-in-2024-and-its-just-getting-started/
https://cdotimes.com/2024/10/17/ai-helped-the-u-s-government-recover-1-billion-in-fraud-in-2024-and-its-just-getting-started/

[CD17] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public
entities. In International Conference on Applied Cryptography and Network Security,
pages 537–556. Springer, 2017.

[CDGM19] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai. Seemless: Secure end-to-end
encrypted messaging with less trust. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), 2019.

[CDW+] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings. https://github.com/TalwalkarLab/leaf.

[CDW+18] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark
for federated settings. arXiv preprint arXiv:1812.01097, 2018. https://arxiv.org/abs/
1812.01097.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computa-
tion of aggregate statistics. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[CGHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server pri-
vate information retrieval with sublinear amortized time. In Proceedings of the In-
ternational Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2022.

[CGJvdM22] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der Maaten. Eif-
fel: Ensuring integrity for federated learning. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2022.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private informa-
tion retrieval. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1995.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. In Communications of the ACM (CACM), 1981.

[Cha88] David L. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1), 1988.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully ho-
momorphic encryption with malicious security. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), October 2018.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient pri-

170

https://github.com/TalwalkarLab/leaf
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/1812.01097

vate information retrieval. In Proceedings of the Theory of Cryptography Conference
(TCC), November 2017.

[CKK+21] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Joohee Lee, Junbum Shin, and
Yongsoo Song. Lattice-based secure biometric authentication for hamming distance.
In Information Security and Privacy: 26th Australasian Conference, ACISP 2021,
Virtual Event, December 1–3, 2021, Proceedings 26, pages 653–672. Springer, 2021.

[CL15] Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic encryption from
ddh. Cryptology ePrint Archive, Paper 2015/047, 2015. https://eprint.iacr.org/2015/
047.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty.
In Proceedings of the ACM Symposium on Theory of Computing (STOC), 1986.

[clo] Cloudflare randomness beacon. https://developers.cloudflare.com/
randomness-beacon/.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing Curves in Three (and Higher)
Dimensional Space from Noisy Data. In Proceedings of the ACM Symposium on Theory
of Computing (STOC), 2003.

[CS04] John Canny and Stephen Sorkin. Practical large-scale distributed key generation.
In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2004.

[CSS11] T-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream aggrega-
tion with fault tolerance. In Proceedings of the International Financial Cryptography
Conference, 2011.

[CSU+19] Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, and Maxim
Zhilyaev. Distributed differential privacy via shuffling. In Proceedings of the In-
ternational Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 375–403, 2019.

[CU21] Albert Cheu and Jonathan R. Ullman. The limits of pan privacy and shuffle privacy
for learning and estimation. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 1081–1094, 2021.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Proceedings of the
International Cryptology Conference (CRYPTO), 1989.

[DFL+20] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica. {DORY}:
An encrypted search system with distributed trust. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 1101–1119, 2020.

171

https://eprint.iacr.org/2015/047
https://eprint.iacr.org/2015/047
https://developers.cloudflare.com/randomness-beacon/
https://developers.cloudflare.com/randomness-beacon/

[DG15] Zeev Dvir and Sivakanth Gopi. 2-server pir with sub-polynomial communication. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), 2015.

[DKIR21] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable
distributed randomness beacon with transparent setup. In In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2021.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise
to Sensitivity in Private Data Analysis. In Proceedings of the Theory of Cryptography
Conference (TCC), 2006.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In Proceedings of the USENIX Security Symposium, August 2004.

[DN03] Irit Dinur and Kobbi Nissim. Revealing Information while Preserving Privacy. In
Proceedings of the ACM Symposium on Principles of Database Systems (PODS), 2003.

[DPC23] Alex Davidson, Gonçalo Pestana, and Sofía Celi. FrodoPIR: Simple, scalable, single-
server private information retrieval. In Proceedings of the Privacy Enhancing Tech-
nologies Symposium (PETS), 2023.

[DSDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe with side
information: Attacks and concrete security estimation. In Annual international cryp-
tology conference, pages 329–358. Springer, 2020.

[DSM22] Vishnu Asutosh Dasu, Sumanta Sarkar, and Kalikinkar Mandal. PROV-FL: Privacy-
preserving round optimal verifiable federated learning. In Proceedings of the ACM
Workshop on Artificial Intelligence and Security, 2022.

[dVYA18] Henry de Valence, Cathie Yun, and Oleg Andreev. Bulletproof implementation based
on delak-cryptography, 2018. https://github.com/dalek-cryptography/bulletproofs.

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias,
and Ling Ren. Practical asynchronous distributed key generation. In In Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2022.

[EDG14] Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private collection of traf-
fic statistics for anonymous communication networks. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2014.

[EFM+20] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang Song,
Kunal Talwar, and Abhradeep Thakurta. Encode, shuffle, analyze privacy revisited:
Formalizations and empirical evaluation. CoRR, abs/2001.03618, 2020.

[EZE+23] Ahmed Roushdy Elkordy, Jiang Zhang, Yahya H. Ezzeldin, Konstantinos Psounis, and

172

https://github.com/dalek-cryptography/bulletproofs

Salman Avestimehr. How Much Privacy Does Federated Learning with Secure Aggre-
gation Guarantee? In Proceedings of the Privacy Enhancing Technologies Symposium
(PETS), 2023.

[Fed24] Federal Trade Commission. A look behind the scenes: Examining the data practices
of social media and video streaming services. https://www.ftc.gov/system/files/ftc_
gov/pdf/Social-Media-6b-Report-9-11-2024.pdf, 2024. Accessed: 2025-05-03.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on
Foundations of Computer Science (Cat. No. 99CB37039), pages 142–152. IEEE, 1999.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS),
1987.

[Fen23] Boyuan Feng. Multi-scalar multiplication (MSM), 2023. https://hackmd.io/
@tazAymRSQCGXTUKkbh1BAg/Sk27liTW9.

[FIC24] FICO. Td wins 2024 fico decisions award for its achieve-
ments in fraud management. https://www.fico.com/en/newsroom/
td-wins-2024-fico-decisions-award-its-achievements-fraud-management, 2024. Ac-
cessed: 2025-05-03.

[FY92] Matthew Franklin and Moti Yung. Communication complexity of secure computation.
In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing,
pages 699–710, 1992.

[GCM+16] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,
and Michael Walfish. Scalable and Private Media Consumption with Popcorn. In
Proceedings of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2016.

[GHK+21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,
Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once / secure MPC with
stateless ephemeral roles. In Proceedings of the International Cryptology Conference
(CRYPTO), 2021.

[GHKR08] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold rsa for
dynamic and adhoc groups. In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2008.

[GHL22] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive pub-
licly verifiable secret sharing with thousands of parties. In Annual international con-
ference on the theory and applications of cryptographic techniques, pages 458–487.
Springer, 2022.

173

https://www.ftc.gov/system/files/ftc_gov/pdf/Social-Media-6b-Report-9-11-2024.pdf
https://www.ftc.gov/system/files/ftc_gov/pdf/Social-Media-6b-Report-9-11-2024.pdf
https://hackmd.io/@tazAymRSQCGXTUKkbh1BAg/Sk27liTW9
https://hackmd.io/@tazAymRSQCGXTUKkbh1BAg/Sk27liTW9
https://www.fico.com/en/newsroom/td-wins-2024-fico-decisions-award-its-achievements-fraud-management
https://www.fico.com/en/newsroom/td-wins-2024-fico-decisions-award-its-achievements-fraud-management

[GHPS22] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider. GPU-
accelerated PIR with Client-Independent Preprocessing for Large-Scale Applications.
In Proceedings of the USENIX Security Symposium, 2022.

[GIK+24] Adrià Gascón, Yuval Ishai, Mahimna Kelkar, Baiyu Li, Yiping Ma, and Mariana
Raykova. Computationally secure aggregation and private information retrieval in
the shuffle model. 2024.

[Gil59] E. N. Gilbert. Random graphs. In The Annals of Mathematical Statistics, 1959.

[GJKR06] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. In Journal of Cryptology,
2006.

[GK10] Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation.
In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2010.

[GKL+20] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,
Rachit Agarwal, and Thomas Ristenpart. Pancake: Frequency smoothing for en-
crypted data stores. In Proceedings of the USENIX Security Symposium, 2020.

[GMPV20] Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Private Aggre-
gation from Fewer Anonymous Messages. In Proceedings of the International Confer-
ence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2020.

[GPS+22] Yue Guo, Antigoni Polychroniadou, Elaine Shi, David Byrd, and Tucker Balch. Mi-
croFedML: Privacy preserving federated learning for small weights. Cryptology ePrint
Archive, Paper 2022/714, 2022. https://eprint.iacr.org/2022/714.

[HDCGZ23] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and Nickolai Zel-
dovich. Private web search with tiptoe. In Proceedings of the 29th symposium on
operating systems principles, pages 396–416, 2023.

[Hen16] Ryan Henry. Polynomial batch codes for efficient IT-PIR. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS), July 2016.

[HHCG+23] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn,
and Vinod Vaikuntanathan. One Server for the Price of Two: Simple and Fast Single-
Server Private Information Retrieval. In Proceedings of the USENIX Security Sympo-
sium, 2023.

[HHK+21] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and Raluca Ada
Popa. Merkle2: A low-latency transparency log system. In In Proceedings of the IEEE

174

https://eprint.iacr.org/2022/714

Symposium on Security and Privacy (S&P), 2021.

[HIKR23] Shai Halevi, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. Additive randomized
encodings and their applications. In Annual International Cryptology Conference,
pages 203–235. Springer, 2023.

[HJKY95] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret
sharing or how to cope with perpetual leakage. In Proceedings of the International
Cryptology Conference (CRYPTO), 1995.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed tcp
variant. ACM SIGOPS operating systems review, 2008.

[HSS+21] Armando Faz Hernández, Samuel Scott, Nick Sullivan, Riad S. Wahby, and
Christopher Wood. Hashing to elliptic curves. https://www.ietf.org/archive/id/
draft-irtf-cfrg-hash-to-curve-10.html, 2021.

[HSSN+22] Kyle Hogan, Sacha Servan-Schreiber, Zachary Newman, Ben Weintraub, Cristina
Nita-Rotaru, and Srinivas Devadas. Shortor: Improving tor network latency via
multi-hop overlay routing. In In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2022.

[IKLM24] Yuval Ishai, Mahimna Kelkar, Daniel Lee, and Yiping Ma. Information-theoretic
single-server PIR in the shuffle model. In Information-Theoretic Cryptography (ITC)
2024, 2024.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), 2004.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
Anonymity. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[ISN87] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general
access structure. In IEEE Global Telecommunication Conference, 1987.

[JLS24] Aayush Jain, Huijia Lin, and Sagnik Saha. A systematic study of sparse lwe. In
Annual International Cryptology Conference, pages 210–245. Springer, 2024.

[KEB98] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go-mixes providing
probabilistic anonymity in an open system. In Information Hiding, 1998.

[KKMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous
distributed key generation for computationally-secure randomness, consensus, and

175

https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-10.html

threshold signatures. In Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS), 2020.

[KLSS23] Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward practical
lattice-based proof of knowledge from hint-mlwe. In Annual International Cryptology
Conference, pages 549–580. Springer, 2023.

[KMA+21] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawit, Zachary Charles, Graham Cormode, Rachel
Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David
Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gib-
bons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben
Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Ras-
mus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Fe-
lix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning.
In Foundations and Trends in Machine Learning, 2021.

[KMSW22] Ilan Komargodski, Shin’ichiro Matsuo, Elaine Shi, and Ke Wu. log*-round game-
theoretically-fair leader election. In Annual International Cryptology Conference,
pages 409–438. Springer, 2022.

[KMZ+19] Sai Krishna, Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. Churp: Dynamic-committee proactive secret sharing.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2019.

[KNH] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-100 dataset. https:
//www.cs.toronto.edu/~kriz/cifar.html.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 1997.

[KP24] Harish Karthikeyan and Antigoni Polychroniadou. Opa: one-shot private aggregation
with single client interaction and its applications to federated learning. In Interna-
tional Workshop on Federated Foundation Models in Conjunction with NeurIPS 2024,
2024.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

176

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[KRKR20] Swanand Kadhe, Nived Rajaraman, O. Ozan Koyluoglu, and Kannan Ramchandran.
FastSecAgg: Scalable secure aggregation for privacy-preserving federated learning. In
ICML Workshop on Federated Learning for User Privacy and Data Confidentiality,
2020.

[LBV+23] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and Anwar
Hithnawi. RoFL: Robustness of secure federated learning. In In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2023.

[LGG+22] D. Leung, Y. Gilad, S. Gorbunov, L. Reyzin, and N. Zeldovich. Aardvark: An asyn-
chronous authenticated dictionary with short proofs. 2022.

[Lip09] Helger Lipmaa. First CPIR protocol with data-dependent computation. In ICISC,
2009.

[LKK+18] Joohee Lee, Dongwoo Kim, Duhyeong Kim, Yongsoo Song, Junbum Shin, and
Jung Hee Cheon. Instant privacy-preserving biometric authentication for hamming
distance. Cryptology ePrint Archive, 2018.

[LLPT23] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and Stefano Tessaro. Lerna: secure
single-server aggregation via key-homomorphic masking. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 302–334.
Springer, 2023.

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information
retrieval and fully homomorphic RAM computation from ring LWE. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), 2023.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based
zero-knowledge proofs via one-time commitments. In IACR International Conference
on Public-Key Cryptography, pages 215–241. Springer, 2021.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew K. Miller. Honeybadgermpc and asynchromix: Practical asynchronous
MPC and its application to anonymous communication. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), pages 887–903, 2019.

[LZMC21] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort:
Efficient federated learning via guided participant selection. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2021.

[MBB+15] S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman. CONIKS:
bringing key transparency to end users. 2015.

[MDC16] Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient private statistics

177

with succinct sketches. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2016.

[MMR+17] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from de-
centralized data. In Proceedings of the Artificial Intelligence and Statistics Conference
(AISTATS), 2017.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In Proceedings of
the Theory of Cryptography Conference (TCC), 2009.

[MOJC23] Mohamad Mansouri, Melek Onen, Wafa Ben Jaballah, and Mauro Conti. SoK: Secure
aggregation based on cryptographic schemes for federated learning. In Proceedings of
the Privacy Enhancing Technologies Symposium (PETS), 2023.

[MR23] Muhammad Haris Mughees and Ling Ren. Vectorized Batch Private Information
Retrieval. In In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2023.

[MSCS19] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Ex-
ploiting unintended feature leakage in collaborative learning. In In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2019.

[MW22] Samir Jordan Menon and David J. Wu. Spiral: Fast, High-Rate Single-Server PIR
via FHE Composition. In In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2022.

[MWA+23] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin.
Flamingo: Multi-round single-server secure aggregation with applications to private
federated learning. Cryptology ePrint Archive, Paper 2023/486, 2023. https://eprint.
iacr.org/2023/486.

[NLT24] Truong Son Nguyen, Tancrède Lepoint, and Ni Trieu. Mario: Multi-round multiple-
aggregator secure aggregation with robustness against malicious actors. Cryptology
ePrint Archive, 2024.

[PBB09] Raluca Ada Popa, Hari Balakrishnan, and Andrew J. Blumberg. VPriv: Protecting
privacy in location-based vehicular services. 2009.

[PBBL11] Raluca Ada Popa, Andrew J. Blumberg, Hari Balakrishnan, and Frank H. Li. Privacy
and accountability for location-based aggregate statistics. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2011.

[Ped91] T. Pedersen. A threshold cryptosystem without a trusted party. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic Techniques

178

https://eprint.iacr.org/2023/486
https://eprint.iacr.org/2023/486

(EUROCRYPT), 1991.

[PFA22] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding secure aggregation
in federated learning via model inconsistency. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2022.

[Pip] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal on
Computing, 9(2):230–250.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptograpy.
In Proceedings of the ACM Symposium on Theory of Computing (STOC), May 2005.

[RNFH19] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. Honeycrisp:
Large-scale differentially private aggregation without a trusted core. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), 2019.

[RNM+21] Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel, and Andreas
Haeberlen. Mycelium: Large-scale distributed graph queries with differential privacy.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2021.

[RS86] Michael O Rabin and Jeffery O Shallit. Randomized algorithms in number theory.
Communications on Pure and Applied Mathematics, 39(S1):S239–S256, 1986.

[RSWP23] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. Elsa: Secure
aggregation for federated learning with malicious actors. In In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2023.

[RZHP20] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce. Orchard:
Differentially private analytics at scale. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2020.

[SAG+23] Jinhyun So, Ramy E Ali, Başak Güler, Jiantao Jiao, and A Salman Avestimehr. Secur-
ing secure aggregation: Mitigating multi-round privacy leakage in federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

[SCR+11] Elaine Shi, T-H. Hubert Chan, Eleanor Rieffel, Richard Chow, and Dawn Song.
Privacy-preserving aggregation of time-series data. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2011.

[SG02] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. In Journal of Cryptology, 2002.

[SGA21] Jinhyun So, Basak Güler, and A. Salman Avestimehr. Turbo-aggregate: Breaking
the quadratic aggregation barrier in secure federated learning. In Journal on Selected
Areas in Information Theory, 2021.

179

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[SHY+22] Jinhyun So, Chaoyang He, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E. Ali,
Basak Guler, and Salman Avestimehr. LightSecAgg: a lightweight and versatile design
for secure aggregation in federated learning. In Proceedings of Machine Learning and
Systems, 2022.

[SSV+22] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel Clark, and
Joseph Near. Efficient differentially private secure aggregation for federated learning
via hardness of learning with errors. In Proceedings of the USENIX Security Sympo-
sium, 2022.

[TBA+19] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui
Zhang, and Yi Zhou. A hybrid approach to privacy-preserving federated learning. In
Proceedings of the ACM workshop on artificial intelligence and security, 2019.

[TBP+19] A. Tomescu, V. Bhupatiraju, D. Papadopoulos, C. Papamanthou, N. Triandopou-
los, and S. Devadas. Transparency logs via append-only authenticated dictionaries.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2019.

[TDG16] Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-Cost ϵ-Private Infor-
mation Retrieval. In Proceedings of the Privacy Enhancing Technologies Symposium
(PETS), 2016.

[TFZ+22] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano Tessaro.
VeRSA: Verifiable registries with efficient client audits from RSA authenticated dic-
tionaries. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2022.

[TKPS22] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. Transparency
dictionaries with succinct proofs of correct operation. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2022.

[vdHLZZ15] Jelle van den Hoof, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:
Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2015.

[WB19] Riad S. Wahby and Dan Boneh. Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. In Proceedings of the Conference on Cryptographic Hardware and
Embedded Systems (CHES), 2019.

[WXWZ23] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Eavesdrop the composition pro-
portion of training labels in federated learning. arXiv:1910/06044, 2023. https:

180

https://arxiv.org/abs/1910.06044
https://arxiv.org/abs/1910.06044

//arxiv.org/abs/1910.06044.

[WY05] David Woodruff and Sergey Yekhanin. A Geometric Approach to Information-
Theoretic Private Information Retrieval. In Computational Complexity Conference
(CCC), 2005.

[YM20] Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. In
Neural Information Processing Systems (NeurIPS), 2020.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries
are belong to us: The power of file-injection attacks on searchable encryption. In
Proceedings of the USENIX Security Symposium, 2016.

[ZLH19] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Neural
Information Processing Systems (NeurIPS), 2019.

[ZMA22] Ke Zhong, Yiping Ma, and Sebastian Angel. Ibex: Privacy-preserving ad conver-
sion tracking and bidding. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2022.

[ZMMA23] Ke Zhong, Yiping Ma, Yifeng Mao, and Sebastian Angel. Addax: A fast, private, and
accountable ad exchange infrastructure. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2023.

[ZPSZ23] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. Piano: Extremely
simple, single-server pir with sublinear server computation, 2023.

[ZSCM23] Mingxun Zhou, Elaine Shi, T-H. Hubert Chan, and Shir Maimon3. A theory of com-
position for differential obliviousness. In Proceedings of the International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2023.

[ZZW24] Yulin Zhao, Hualin Zhou, and Zhiguo Wan. Superfl: Privacy-preserving federated
learning with efficiency and robustness. Cryptology ePrint Archive, 2024.

181

https://arxiv.org/abs/1910.06044
https://arxiv.org/abs/1910.06044
https://arxiv.org/abs/1910.06044

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF ILLUSTRATIONS
	INTRODUCTION
	``PRIVATE PUSH'': SECURE AGGREGATION
	``PRIVATE PULL'': PIR IN THE SHUFFLE MODEL
	DEFERRED MATERIALS FOR FLAMINGO PROTOCOL
	DEFERRED MATERIALS FOR ARMADILLO PROTOCOL
	DEFERRED PROOF OF PIR CHAPTER
	BIBLIOGRAPHY

