
SPRINT: High-Throughput Robust
Distributed Schnorr Signatures

Fabrice Benhamouda* Shai Halevi* Hugo Krawczyk* Yiping Ma Tal Rabin*

*Work done partially while at the Algorand Foundation. 1

Signature schemes [DH76, GMR88]

Alice Bob

Alice: “Eurocrypt 2024 is in Zurich”
Alice

It is indeed Alice’s
message!

Public:
Verification key 𝑃𝐾

Internet

Signing key 𝑆𝐾
Verification key 𝑃𝐾

2

Signature schemes [DH76, GMR88]

Alice Bob

Alice: “Eurocrypt 2024 is in Paris”

Public:
Verification key 𝑃𝐾

Alice

It is not Alice’s
message!

Secret:
Signing key 𝑆𝐾

Signing key 𝑆𝐾
Verification key 𝑃𝐾

3

Internet

Security: anyone without 𝑆𝐾
cannot forge signatures

Alice: “Eurocrypt 2024 is in Zurich”

Threshold signature [Des88, DF90, Ped91]

Single point of
failure!

Alice

Security: the corrupted set of parties
cannot forge signatures𝑆𝐾 should be

kept secret

4

Threshold signature: applications

• Prior works are efficient in the setting of a small set of parties
[KG20, CKM21, AB21, NRS21, BCK+22, TZ23, CKM23, …]

5

Threshold signature: applications

• This work deals with a large set of parties
• E.g., blockchain where #parties is in the hundreds

6

SPRINT: key ideas

• Challenge: signing by a large set of parties

Expensive!

7

Alice

SPRINT: key ideas

• Challenge: signing by a large set of parties
• Insight 1: Alleviate the cost by signing many messages at once

Though expensive…

8

Alice
Bob
Charlie
Dave
Ed
Frank
Helen

SPRINT: key ideas

• Challenge: signing by a large set of parties
• Insight 1: Alleviate the cost by signing many messages at once

9

Though expensive…

SPRINT: key ideas

• Challenge: signing by a large set of parties
• Insight 1: Alleviate the cost by signing many messages at once
• Insight 2: Eliminate the effects caused by malicious parties

10

• SPRINT has security and robustness
• Two-round message-independent preprocessing
• One round non-interactive signing: many messages at once

SPRINT: a bird's-eye view

Given 𝑛 ≥ 3𝑡 + 1 parties of which 𝑡 are corrupted,
SPRINT generates (𝑛 − 2𝑡) signatures.

Theorem (informal)
Optimal resilience if
we want robustness

11

Critical when the set
of parties is large

SPRINT: a bird's-eye view

• SPRINT has security and robustness
• Two-round message-independent preprocessing
• One round non-interactive signing: many messages at once

Given 𝑛 ≥ 3𝑡 + 2𝑎 − 1 parties of which 𝑡 are corrupted,
SPRINT generates 𝑎(𝑛 − 2𝑡) signatures.

Theorem (informal)
Tradeoff between

 resilience and throughput

12

Critical when the set
of parties is large

SPRINT: a bird's-eye view

𝑡 𝑎 #signatures bcast scalars/group elements per signature
𝑛/4 𝑛/8 𝑛!/16 ~34
𝑛/5 𝑛/5 3𝑛!/25 ~18

• SPRINT has security and robustness
• Two-round message-independent preprocessing
• One round non-interactive signing: many messages at once

Quadratic number
of signatures Constant amortized cost

13

Feasible even when 𝑛 = 1000

SPRINT: a bird's-eye view

𝑡 𝑎 #signatures bcast scalars/group elements per signature
𝑛/4 𝑛/8 𝑛!/16 ~34
𝑛/5 𝑛/5 3𝑛!/25 ~18

• SPRINT has security and robustness
• Two-round message-independent preprocessing
• One round non-interactive signing: many messages at once

Quadratic number
of signatures Constant amortized cost

14

Feasible even when 𝑛 = 1000

Less
corruption

More
signatures

Smaller
amortized cost

Outline

• Preliminaries

• SPRINT techniques

• Extreme packing and SIMD

• Early-termination agreement

• Details and discussion

15

Schnorr signature

• Notation:
• A group 𝔾 of order 𝑝 in which DL is hard, generator 𝐺
• Hash function ℋ: 0, 1 ∗ →	ℤ"

 Signing (secret) key 𝑠←
$
ℤ"

 Verification (public) key 𝑆 ≔ 𝑠 ⋅ 𝐺
	

Throughout this talk, we use additive notation for groups

16

Schnorr signature

Secret 𝑠	
Public 𝑆

• Notation:
• A group 𝔾 of order 𝑝 in which DL is hard, generator 𝐺
• Hash function ℋ: 0, 1 ∗ →	ℤ"

	
Sign 𝑠, 𝑆,𝑀

 𝑟←
$
ℤ#	, 𝑅 ← 𝑟 ⋅ 𝐺

 𝑒 = ℋ 𝑆, 𝑅,𝑀
 𝜙 = 𝑟 + 𝑒𝑠
 Output (𝑅, 𝜙)

Verify 𝑆,𝑀, (𝑅, 𝜙)
 Let 𝑒 = ℋ 𝑆, 𝑅,𝑀
 Check if 𝜙 ⋅ 𝐺 = 𝑅 + 𝑒 ⋅ 𝑆

presignature

𝜙 ⋅ 𝐺 = 𝑟 + 𝑒𝑠 ⋅ 𝐺 = 𝑅 + 𝑒 ⋅ 𝑆

Public 𝑆

17

Threshold Schnorr

• Assuming:
• Signing key 𝑠 is Shamir-shared to 𝑠 = (𝑠#, … , 𝑠$) with threshold 𝑡
• Verification key 𝑆 is known to all

𝑠$

𝑠%
…

𝑠!

ThrSign [𝑠], 𝑆,𝑀

𝑟 ←
$
ℤ#	, 𝑅 = 𝑟 ⋅ 𝐺

 𝑒 = ℋ 𝑆, 𝑅,𝑀
 Party 𝑖: 𝜙& = 𝑟& + 𝑒𝑠&

 Compute 𝜙, output (𝑅, 𝜙)

…
𝑠&

Presignature
generation

(Degree-𝑡) sharing of 𝑠

18

• Only sign a single message
• May not be secure or robust

SPRINT: main techniques

• “Extreme packing + SIMD computation”

• “An early-termination agreement” (this work assumes async. setting)

19

Many 𝑟 ←
$
ℤ"	

Many 𝑅 = 𝑟 ⋅ 𝐺
Operate on one share,
sign multiple messages

Ensure good 𝑟 ←
$
ℤ"	

and hence good 𝑅 = 𝑟 ⋅ 𝐺

“Insight 1: Alleviate the cost by signing many messages at once”

“Insight 2: Eliminate the effects caused by malicious parties”

Not exactly a DL-DKG, but sufficiently
good for signature purpose

Outline

• Preliminaries

• SPRINT techniques

• Extreme packing and SIMD

• Early-termination agreement

• Details and discussion

Orthogonal to
security/robustness

20

Detailed

Brief

• Parameters: 𝑛 parties with 𝑡 collusion
• Sketch (strawman presignature generation):

one round, each party contributes a random polynomial

21

𝑟 ←
$
ℤ",	 𝑅 = 𝑟 ⋅ 𝐺 [GJKR07]

• Round 1. Each 𝑃&	 (dealer) sends to each 𝑃((shareholder) a share 𝐻& 𝑗 	

𝐻# 1 	 𝐻# 2 	 𝐻# 3 	 …	 𝐻#(𝑛)

𝐻% 1 	 𝐻% 2 	 𝐻% 3 	 …	 𝐻%(𝑛)

𝐻& 1 	 𝐻& 2 	 𝐻& 3 	 …	 𝐻&(𝑛)

…

𝐻$ 1 	 𝐻$ 2 	 𝐻$ 3 	 …	 𝐻$(𝑛)

𝑃#

𝑃%

𝑃&

𝑃$

𝑃# 𝑃% 𝑃& 𝑃$
Polynomial 𝐻# of degree 𝑡

…

22

[GJKR07]𝑟 ←
$
ℤ",	 𝑅 = 𝑟 ⋅ 𝐺

• Round 1. Each 𝑃(locally adds the shares: let 𝐻 = ∑&)$% 𝐻&, and 𝑟(: = 𝐻 𝑗

𝐻# 1 	 𝐻# 2 	 𝐻# 3 	 …	 𝐻#(𝑛)

𝐻% 1 	 𝐻% 2 	 𝐻% 3 	 …	 𝐻%(𝑛)

𝐻& 1 	 𝐻& 2 	 𝐻& 3 	 …	 𝐻&(𝑛)

…

𝐻$ 1 	 𝐻$ 2 	 𝐻$ 3 	 …	 𝐻$(𝑛)

𝑃# 𝑃% 𝑃& 𝑃$…

𝐻(1) 𝐻(2) 𝐻(3) 𝐻(𝑛)

+

… Defines 𝑟 = 𝐻(0), 𝑟' = 𝐻(𝑗)
23

Polynomial 𝐻# of degree 𝑡

[GJKR07]𝑟 ←
$
ℤ",	 𝑅 = 𝑟 ⋅ 𝐺

• Round 1. 𝑃& broadcast 𝑅& ≔ 𝐻&(0) ⋅ 𝐺, then 𝑅 = ∑&)$% 𝑅&

𝐻# 0 ⋅ 𝐺

𝐻% 0 ⋅ 𝐺

𝐻& 0 ⋅ 𝐺
…

𝐻$ 0 ⋅ 𝐺

𝑃#

𝑃%

𝑃&

𝑃(

𝐻 0 ⋅ 𝐺 Presignature 𝑅

+

24

[GJKR07]𝑟 ←
$
ℤ",	 𝑅 = 𝑟 ⋅ 𝐺

Addition in the
group

(−2, 𝑟(%))

Standard Shamir
- Polynomial 𝐻 of degree 𝑡
- Hide the secret at point 0
- Collusion threshold 𝑡

(0, 𝑟(+))
(1, 𝐻′(1))

(0, 𝑟)

(1, 𝐻(1))

(2, 𝐻(2))

Packed Shamir [FY92]
- Polynomial 𝐻′ of degree 𝑡 + 𝑎 − 1
- Hide 𝑎 secrets at 0,−1,… ,−𝑎 + 1
- Collusion threshold 𝑡

(2, 𝐻′(2))
(3, 𝐻′(3))

(−1, 𝑟(#))
(4, 𝐻′(4))

Still, each party holds only one share
25

“Many” 𝑟 ←
$
ℤ2 and 𝑅 = 𝑟 ⋅ 𝐺

using packed secret sharing

Sharing of 𝑟($), … , 𝑟(,) ,
presignatures 𝑅($), … , 𝑅(,)

• What we have:
• Sharing of 𝑎 random values: 𝑟($), … , 𝑟(,)

• Presignatures 𝑅($), … , 𝑅(,)

• Messages (𝑀 $, … ,𝑀(,))
• Public values (𝑒 $, … , 𝑒(,))

26

Compute sharing of 𝜙($) ≔ 𝑟 $ + 𝑒 $ 𝑠 $&',…,*

• Simpler: compute sharing of 𝑟 $ + 𝑒 $ 𝑠 $&',…,*

Degree-(𝑡 + 𝑎 − 1)
sharing of (𝑟 ! , … , 𝑟 ")

Degree-𝑡	sharing of 𝑠

Only works for
one signature!

𝑟 !𝑟 #𝑟 $

𝑠

27

Compute sharing of 𝑟 $ + 𝑒 $ 𝑠 $&',…,*

• Compute sharing of 𝑟 $ + 𝑒 $ 𝑠 $&',…,*

Degree-(𝑡 + 𝑎 − 1)	
sharing of (𝑠, … , 𝑠)
i.e., 𝑎 multiples of 𝑠

Degree-(𝑡 + 𝑎 − 1)
sharing of (𝑟 ! , … , 𝑟 ")

How to deal with 𝑒(&)
in packed sharing?

𝑟 !𝑟 #𝑟 $

𝑠𝑠𝑠

𝑒($)𝑠𝑒($)𝑠𝑒($)𝑠

28

Compute sharing of 𝑟 $ + 𝑒 $ 𝑠 $&',…,*

Still works for
one signature…

SPRINT: SIMD technique

• Packed sharing of 𝑟('), … , 𝑟(*)

• Packed sharing of (𝑠, 𝑠, … , 𝑠)
• Public values	(𝑒 ' , … , 𝑒(*))

• The packed sharing of 𝑟 $, … , 𝑟 , + 𝑒 $, … , 𝑒 , ⋅ 𝑠 can be computed
as

𝐻 + 𝐸 ⋅ 𝐹
• Each party 𝑃+ locally computes 𝐻 𝑗 + 𝐸 𝑗 ⋅ 𝐹(𝑗)
• A little loss in resilience: 𝑛 ≥ 𝑡 + 2𝑎 − 1 instead of 𝑛 ≥ 𝑡 + 1

Polynomial 𝐻 of degree 𝑡 + 2𝑎 − 2

Polynomial 𝐸 of degree 𝑎 − 1

Polynomial 𝐹 of degree 𝑡 + 𝑎 − 1

29

Extreme packing using super-invertible matrices

• We defined 𝐻 = ∑,&'- 𝐻, for signing randomness
• Each 𝐻, itself can be used as signing randomness ⇒ boost by a factor of 𝑛?
• #random polynomials = #honest dealers = 𝑏 But we don’t know which!

30

⋅

𝐻'
…	
…	
…	
𝐻-

=

𝑈'
…
…
𝑈.

Super-invertible
matrix [HN06]

They are independently random

Result in 𝑏 sharing of length-𝑎 randomness

Outline

• Preliminaries

• SPRINT techniques

• Extreme packing and SIMD

• Early-termination agreement

• Details and discussion

31

Detailed

Brief

• Parameters: 𝑛 parties with 𝑡 collusion
• A bad party: contribute a polynomial such that reconstruction fails!
• Sketch (robust presignature generation):
• Round 1. Each party contributes a polynomial (supposed to be the right degree)
• Round 2. Agree on a set of good polynomials (“good” = has the right degree)

• Result: agree on at least 𝑛 − 𝑡 good polynomials (in the async. setting)
• So we have 𝑏 ≥ 𝑛 − 2𝑡 good random polynomials
• In total 𝑎 𝑛 − 2𝑡 sigantures

32

Ensure good sharing of (𝑟(5), … , 𝑟(7))

New

Outline

• Preliminaries

• SPRINT techniques

• Extreme packing and SIMD

• Early-termination agreement

• Details and discussion

33

Details

• Hashing and re-randomization [GS22]
• 𝛿 = 	ℋ(𝑆, QUAL, 𝑅 & , 𝑀 &

&∈{$,…,,9})
• Δ = 𝛿 ⋅ 𝐺
• Use 𝑅 + Δ to replace the previous 𝑅

• The use of Feldman commitments to polynomials
• Not a secure DKG: slightly biased key when adversary is rushing [GJKR07]
• We proved that for signature purpose it is fine

• Dynamic committees and how to sub-sample them

34

Summary

SPRINT
• Ω(𝑛/) signatures per run assuming Ω(𝑛) corruption
• Two-round presignature generation + one round non-interactive signing

v Concurrent security:
[Shoup23] makes SPRINT concurrently secure in a black-box way

v Can we achieve better tradeoff between resilience and efficiency?

35

36

Backup slides

37

Robust presignature generation

• Round 1. Each party 𝑃& chooses a random degree-𝑡 polynomial 𝐻&, broadcasts
Feldman commitments to 𝐻&

𝐻# 0 ⋅ 𝐺	 𝐻# 1 ⋅ 𝐺	 𝐻# 2 ⋅ 𝐺	 𝐻# 3 ⋅ 𝐺	 …	 𝐻# 𝑡 ⋅ 𝐺𝑃#
Feldman

commitment
to 𝐻#

Parameters: 𝑛 parties with 𝑡 corrupted

Everyone can verify a given 𝑟$(claimed to be 𝐻$(𝑗) is indeed correct:
• For 𝑗 = 0,… , 𝑡 it is easy to check: compare 𝑟#' ⋅ 𝐺 with the commitment
• For 𝑗 = 𝑡 + 1,… , 𝑛, we can use “interpolation on the exponent”:

Compare 𝑟$& ⋅ 𝐺 with 𝐻$ 𝑗 ⋅ 𝐺 = 𝜆' 𝐻$ 0 ⋅ 𝐺 + 𝜆$ 𝐻$ 1 ⋅ 𝐺 + ⋯+ 𝜆((𝐻$ 𝑡 ⋅ 𝐺)

Feldman commitment

Can compute this!
38

Robust presignature generation

• Round 1. Party 𝑖 broadcasts Enc(𝑃𝐾(, 𝑟&()	where 𝑟&(= 𝐻&(𝑗)

𝑃#
Public key encryption

of the shares𝐻#(1)
𝑃𝐾!

𝐻#(2)
𝑃𝐾#

𝐻#(𝑛)
𝑃𝐾(

…

𝑃$ 𝐻$(1)
𝑃𝐾!

𝐻$(2)
𝑃𝐾#

𝐻$(𝑛)
𝑃𝐾(

…

…

39

• Round 2. Parties agree on a set QUAL that contains dealers who send valid shares
(that lie on a polynomial of degree-𝑡)

Robust presignature generation

𝑃#
Public key encryption

of the shares𝐻#(1)
𝑃𝐾!

𝑟#'
𝑃𝐾)

𝐻#(𝑛)
𝑃𝐾(

……

§ 𝑃' decrypts to 𝑟#'
§ 𝑃' verifies 𝑟#' against Feldman commitment to 𝐻#: is 𝑟#' equal 𝐻#(𝑗)?
§ How can an honest 𝑃' convince others that 𝑃# is bad?

40

The simple agreement protocol

• Observation 1: publicly verifiable complaint enabled by PKE of shares
• If 𝑃(failed the verification against 𝑃$’s share, create a verifiable complaint:
• 𝑟$(
• ZKP of decrypting the ciphertext Enc(𝑃𝐾(, 𝑟$()

• Each shareholder: exclude dealers who were complained about

ElGamal encryption

Just ends here!

Proof of DL

41

The simple agreement protocol

• Observation 2: no need for “completeness”
• Completeness [Groth-Shoup23]: all honest parties eventually have valid shares ⇒

possible to forgo polynomial commitments and rely on error correction
• We use verifiable complaints to disqualify bad dealers; we do not to help the

complaining shareholders to get any more shares

42

Robust presignature generation: recap

• Round 1: Each party contributes a polynomial 𝐻,
 (broadcast PKE of shares of 𝐻, and Feldman commitment to 𝐻,)
• Round 2: Each party broadcasts verifiable complaint if it has any

• Agree on a set QUAL of “correct” polynomials 𝐻&’s (in the async. setting):
QUAL + |	 | ≥ 𝑛 − 𝑡

• Exclude those 𝐻&’s that are correct but not random
 𝑏 = QUAL − 𝑡 − 	 |) ≥ 𝑛 − 2𝑡

• Each polynomial packs 𝑎 secrets
• We get 𝑎 𝑛 − 2𝑡 random values for signing

How many signatures we get?

43

