SPRINT: High-Throughput Robust
Distributed Schnorr Signatures

Fabrice Benhamouda* Shai Halevi* Hugo Krawczyk* Yiping Ma Tal Rabin*

aWs & Penn

*Work done partially while at the Algorand Foundation.

Signature schemes [pH76, GVIRS3]

Public:
Verification key PK

[Alice: “Eurocrypt 2024 is in Zuri/ch” J g

@ Internet S
D D
Alice Bob

Signing key SK It is indeed Alice’s
Verification key PK message!

Signature schemes [pH76, GVIRS3]

Public:
Verification key PK

Security: anyone without SK
cannot forge signatures

Internet

@
)

Alice Bob

Signing key SK _ -
[:e:ica\tion key PK It is not A|IC|e S
message!

Threshold signature [pesss, DFoo, Ped91]

Security: the corrupted set of parties

{ SK should be cannot forge signatures

kept secret

Single point of

failure!

[Alice: “Eurocrypt 2024 is in Zurich” I

Threshold signature: applications

* Prior works are efficient in the setting of
[KG20, CKM21, AB21, NRS21, BCK*22, TZ23, CKM23, ...]

Threshold signature: applications

* This work deals with a large set of parties

* E.g., blockchain where #parties is in the hundreds

< CorpoSign

https://www.corposign.net » News

BLOCKCHAIN DOCUMENT SIGNING PLATFORM

The Blockchain Doc

platform. - Step 2: Us signatura.co

https://blog.signatura.co » using-the-blockchain-as-a-di... :

Using_the blockchain as a digital signature scheme

Using the blockchain as a digital signature scheme ... Since late '70s digital signatures have
been successfully used to provide authentication, integrity and non ...

SPRINT: key ideas

* Challenge: signing by a large set of parties

Expensive!

SPRINT: key ideas
* Challenge: signing by a large set of parties @/
* Insight 1: Alleviate the cost by signing many messages at once W

Though expensive... @m

SPRINT: key ideas

* Challenge: signing by a large set of parties

* Insight 1: Alleviate the cost by signing many messages at once

Though expensive...

e

= e

11211231 [11122231 [1112223

11000 =0 11000 =0 101000 =0

[~

SPRINT: key ideas

* Challenge: signing by a large set of parties
* Insight 1: Alleviate the cost by signing many messages at once
* Insight 2: Eliminate the effects caused by malicious parties

10

SPRINT: a bird's-eye view

Critical when the set

of parties is large

* SPRINT has security and robustness
* Two-round message-independent preprocessing

* One round non-interactive signing: many messages at once

Optimal resilience if
/_[IMELeIEl e want robustness
Give parties of which t are corrupted,

SPRINT generates (n — 2t) signatures.

-

11

SPRINT: a bird's-eye view

Critical when the set
* SPRINT has security and robustness of parties is large

* Two-round message-independent preprocessing

* One round non-interactive signing: many messages at once

) Tradeoff between
_l Theorem (i resilience and throughput

_

Given n = 3t + 2a — 1 parties of which t are corrupted,
SPRINT generates a(n — 2t) signatures.

~

/

12

SPRINT: a bird's-eye view

* SPRINT has security and robustness
* Two-round message-independent preprocessing

* One round non-interactive signing: many messages at once

Quadratic number
of signatures Constant amortized cost

t a #signatures bcast scalars/group elements per signature
n/4 n/8 n®/16 ~34

Feasible even whenn = 1000

13

SPRINT: a bird's-eye view

* SPRINT has security and robustness
* Two-round message-independent preprocessing

* One round non-interactive signing: many messages at once

Constant amortized cost

t a #signatures bcast scalars/group elements per signature
2 N
n/4 Tl/8 n /16 More 34 Smaller
Less n/5 n/5 3n2/25 signatures s B amortized cost
corruption
Feasible even whenn = 1000

Quadratic number

of signatures

14

Outline

* Preliminaries

15

Schnorr signature

e Notation: Throughout this talk, we use additive notation for groups

* A group G of order p in which DL is hard, generator G
* Hash function #:{0,1}* - Z,

$
@ Signing (secret) key S < 1y
@ \erification (public)key S :=s5-G

16

Schnorr signature

* Notation:

* A group G of order p in which DL is hard, generator G
* Hash function #:{0,1}* - Z,

Sig presignature
$.
r<Z,, R<r-G Verify(S,M, (R, ¢))
e =H(S,R,M) Lete = H(S,R, M)
p—— '\4 Checkif¢p-G=R+e-S
Secret s a Output (R, $) @
PublicS @R ' Public S @R

b-G=0+es)-G=R+e-S

17

Threshold Schnorr

e Assuming: (Degree-t) sharing of s

* Signing key s is Shamir-shared to [s] = (54, ..., S;;) with threshold t
 Verification key S is known to all

ThrSign([s],S, M)

|7] i Zp , R=1r-G generation
e=H(S,R M)

Presignature

Only sign a single message

May not be secure or robust

18

SPRINT: main techniques

* “Extreme packing + SIMD computation”

Many [r] i Ly, Operate on one share,
ManyR=71-G sigh multiple messages

“Insight 1: Alleviate the cost by sighing many messages at once”

* “An early-termination agreement” (this work assumes async. setting)

$
Ensure good [r] « Z,
and hencegood R =71-G

“Insight 2: Eliminate the effects caused by malicious parties”

19

Outline

* SPRINT techniques

e Extreme packing and SIMD

.

Orthogonal to
security/robustness

|

20

$
rl<Z,, R=71-G

* Parameters: n parties with t collusion

e Sketch (strawman presignature generation):
one round, each party contributes a random polynomial

[GJKRO7]

21

$
] « Ly, R=1-G [GJKRO7]

* Round 1. Each P; (dealer) sends to each P; (shareholder) a share H;(j)

P, P, P, .. P
[pl H,(1) H,(2) H,3) .. Hl(n)) Selhmmitel B, of degen ¢
P, Hy(1) Hy(2) Hy(3) .. Hy(n)
P, Hy(1) Hs(2) Hs(3) .. Hs(n)

Fn Hn,(1) Hn(2) H,(3) .. Hp(n)

22

$
] « Ly, R=1-G [GJKRO7]

* Round 1. Each P; locally adds the shares: let H = ¥/ H;, and rj: = H(j)

P, P, P, .. P,
(Hl(l) H,(2) H(3) .. Hl(n)) Polynomial H; of degree t

Hy(1) H,(2) Hy(3) .. Hp(n)
H3(1) Hs(2) H3(3) .. Hz(n)

+ Hn(1) Hn(2) Hn,(3) .. Hp(n)

(H(l) H2) H@3) .. H(n)] Defines r = H(0), r; = H(j)

23

$
rl<Z,, R=71-G
 Round 1. P; broadcast R; := H;(0) - G,thenR = }* | R;
Pl Hl(O) : G

P2 Hz(O)G

P3 H3(0) - G

Addition in the
group + H,(0) G

HO) -G Presignature R

[GJKRO7]

24

$
“Many” [r] < Zy,andR =71-G
using packed secret sharing

Standard Shamir (2,H(2))
- Polynomial H of degree t (0,7)
- Hide the secret at point 0

- Collusion threshold t

(1,H(1))
Sharing of (), ..., r(@),

presignatures (R, ..., R@)

Packed Shamir [FY92]
- Polynomial H' of|degreet + a — 1
- Hide asecretsat0,—1,...,—a+1
- Collusion threshold t

(1, H'(1)) 4,H'(4))

3,H' (3
(2. 7@ e H@y GHE)

Still, each party holds only one share
25

Compute sharing of (¢ == r# + e®s)

* What we have:
a random values: (rV), ..., (@)
» Presignatures (R, ..., R(D)
* Messages (MWD, ..., M(@)
* Public values (e, ..., e(®)

ey

26

Compute sharing of (r +e®s)

e Simpler: compute sharing of (T(k) + S)k=1 a

(3)
T (2)
Degree-(t +a— 1) y Y

sharing of (rV, ..., r(®)

Only works for

one signature!

Degree-t sharing of s

27

Compute sharing of () + ¢(®)s)

k=1,...,a

ith e (®
: (k) How to deal with e
* Compute sharing of (r + S)k=1,... Ml i packed sharing?

(3)
r (2)
Degree-(t +a — 1) ‘ r

sharing of (rV, ..., r(@®)

Still works for
one signature...

Degree-(t +a — 1)
sharing of (s, ..., s)
i.e., a multiples of s

28

SPRINT: SIMD technique

» Packed sharing of (r(l), . r(a)) Polynomial H of degree t + 2a — 2
* Packed sharing of (s, s, ..., 5) Polynomial F of degree t + a — 1
. i (1) (a)

Public values (e yees €) Polynomial E of degreea — 1

* The packed sharing of (), .., »(@) + (e, .., e(@) .5 can be computed
as
H+E-F

* Each party P; locally computes H(j) + E(j) - F(j)
e Alittle lossin resilience:n >t + 2a — linsteadofn >t + 1

29

Extreme packing using super-invertible matrices

« We defined H = };}*; H; for signing randomness
* Each H; itself can be used as signing randomness = boost by a factor of n?

* #frandom polynomials = #honest dealers = b But we don’t know which!

_H - i i
1 U1
Super-invertible
matrix [HNO6]

They are independently random

—Hn— -Ub_
Result in b sharing of length-a randomness

30

Outline

* SPRINT techniques

* Early-termination agreement

31

Ensure good sharing of (r%), ..., (@)

* Parameters: n parties with t collusion
* A bad party: contribute a polynomial such that reconstruction fails!

e Sketch (robust presignature generation):
* Round 1. Each party contributes a polynomial (supposed to be the right degree)
* Round 2. Agree on a set of good polynomials (“good” = has the right degree)

e Result: agree on at least n — t good polynomials (in the async. setting)
e Sowe have b = n — 2t good random polynomials
* In total a(n — 2t) sigantures

32

Outline

* Details and discussion

33

Details

* Hashing and re-randomization [GS22]
- § = H(S,QUAL,{RW, MW}
cA=6-G
 Use R + A to replace the previous R

ie{l,...,ab})

* The use of Feldman commitments to polynomials
* Not a secure DKG: slightly biased key when adversary is rushing [GJKRO7]
* We proved that for signature purpose it is fine

* Dynamic committees and how to sub-sample them

34

Summary

4)
SPRINT

e ((n?) signatures per run assuming Q(n) corruption

\. Two-round presignature generation + one round non-interactive signing)

** Concurrent security:
[Shoup23] makes SPRINT concurrently secure in a black-box way

** Can we achieve better tradeoff between resilience and efficiency?

Thanks!

35

36

Backup slides

Robust presignature generation

Parameters: n parties with t corrupted

* Round 1. Each party P; chooses a random degree-t polynomial H;, broadcasts
Feldman commitments to H;

Feldman
commitment
to Hy

P, H(0)-G H(1)-G H2)-G H,(3)-G .. Hi(t)-G

/{ Feldman commitment }

Everyone can verify a given 7 j claimed to be H; (j) is indeed correct:
* Forj=0,..,titis easy to check: compare r,; - G with the commitment
* Forj=t+1,..,n,wecan use “interpolation on the exponent”:

Can compute this!

38

Robust presignature generation

* Round 1. Party i broadcasts Enc(PKj, 1) where 1;; = H;(j)

PKn Public key encryption
P, H,(1) H,(2) of the shares
PK,
P H, (1) H, (2)

39

Robust presignature generation

 Round 2. Parties agree on a set QUAL that contains dealers who send valid shares
(that lie on a polynomial of degree-t)

PK; PK; PKy Public key encryption
g P, H,(1) of the shares
/\
-

40

The simple agreement protocol

ElGamal encryption

* Observation 1: publicly verifiable complaint enabled by PKE of shares

* If P; failed the verification against P;’s share, create a verifiable complaint:

* ZKP of decrypting the ciphertext Enc(PKj, 1)

* Each shareholder: exclude dealers who were complained about

Just ends here!

41

The simple agreement protocol

* Observation 2: no need for “completeness”

* Completeness [Groth-Shoup23]: all honest parties eventually have valid shares =
possible to forgo polynomial commitments and rely on error correction

42

Robust presignature generation: recap

* Round 1: Each party contributes a polynomial H;

* Round 2: Each party broadcasts verifiable complaint if it has any

r{ How many signatures we get?] \

* Agree on a set QUAL of “correct” polynomials H;’s (in the async. setting):

IQUAL| + |0 | =n—t
* Exclude those H;’s that are correct but not random
b=|QUAL| - (t -]) =n—2t

e Each polynomial packs a secrets

\° We get a(n — 2t) random values for signing /

43

