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The secure aggregation problem: motivation

People’s habit of
setting password?

Browsing
statistics?

Average blood pressure
in young population?

Transaction patterns
of the general public?




The secure aggregation problem

Client i has an input Xx; Goal: Learn only f (X4,X5, ...)
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Correctness: if everyone follows the protocol, then the server gets f (X4, X5, ...

Privacy: the server only learns f (X4, X5, ... ) but nothing else



The secure aggregation problem

Client i has an input Xx; Goal: Learn only f (X4,X5, ...)
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Robustness: even when some clients misbehave, the server can always learn
f(Xq,X5, ...) for those valid x;’s.



Challenges and goals

Efficiency

Withstand malicious behavior




What progress has been made so far?

— meanhs more efficient

Handling dropouts wz et al. 2017] [ Bell et al. 2020 ] { Flamingo (2023) ]
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Abort when malicious [—Igc; (2022) ] ACORN (2023),
behavior detected OPA (2025)
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This work

Robustness guarantee: server only learns the sum of client inputs with valid L,, L., norms

3 rounds of server-client communication

Communication model:
e Clients can only directly talk to the server

* Assuming PKIl, a client can talk with other clients via the server with their messages
encrypted

Threat model:
e Server is semi-honest (trying to violate privacy)
 Clients can be arbitrarily malicious (trying to disrupt the aggregation)
» A (static) bounded fraction of malicious clients



Key idea: co-design aggregation and proof

* A secure aggregation protocol with very simple arithmetic computation

* Each client can write their proof statements as inner-product relation



An inner-outer aggregation paradigm

Tool: key-and-message homomorphic encryption Re-gev . encryPtion:
linear operations
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Easy to handle dropouts

If a client drops,
no impact on subsequent steps
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Resisting disruption
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Help with aggregating s; for
those who send valid proofs

@hcjck all the proofs ]
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Evaluation setup

* Client:
* MacBook Air, Apple M2, 8GB RAM
* Benchmarks using a single thread

e Server:

* Google Cloud Platform
* Instance Type: n2-standard-8 (8 vCPUs, 32 GB RAM)
 Benchmarks using 8 threads
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Robustnhess can be achieved with reasonable cost

 Client: without proof, only on the order of millisecond; with proof, 1-10 seconds

depending on input size

Computation Cost at Input Length 1K

|
Packed sharing 967 ms
Encrypt-and-share

Masking .26 ms

Commit [§16:98 ms

Scrape test proof

Enc linear proof 8e0.00 ms

Commit-and-prove

L2 norm proof P0.00 ms
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Robustnhess can be achieved with reasonable cost

» Server computation is highly parallelizable

* Batch verification: computation scales only logarithmic with number of clients
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Summary @A

* Making secure aggregation robust is practically feasible

* What's next?
e Reducing cost for proof of infinity norm (the current bottleneck)
e Other useful metrics to verify
* Privacy against a dynamic adversary

Thanks!
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