*" Armadillo: Robust Secure Aggregation for
" Federated Learning with Input Validation

Yiping Ma Yue Guo Harish Karthikeyan Antigoni Polychroniadou

&Penn JPMorgan

The secure aggregation problem: motivation

People’s habit of
setting password?

Browsing
statistics?

Average blood pressure
in young population?

Transaction patterns
of the general public?

The secure aggregation problem

Client i has an input Xx; Goal: Learn only f (X4,X5, ...)

(

2 Ol
2% —

X7

*Pope

Correctness: if everyone follows the protocol, then the server gets f (X4, X5, ...

Privacy: the server only learns f (X4, X5, ...) but nothing else

The secure aggregation problem

Client i has an input Xx; Goal: Learn only f (X4,X5, ...)

— o

%

O a
;o™ g
i @
=

(3
(3

*Pope

X7

Robustness: even when some clients misbehave, the server can always learn
f(Xq,X5, ...) for those valid x;’s.

Challenges and goals

Efficiency

Withstand malicious behavior

What progress has been made so far?

— meanhs more efficient

Handling dropouts wz et al. 2017] [Bell et al. 2020] { Flamingo (2023)]

N\ N >

Abort when malicious [—Igc; (2022)] ACORN (2023),
behavior detected OPA (2025)

— N
(Withstand malicious behavior J { This work]

This work

Robustness guarantee: server only learns the sum of client inputs with valid L,, L., norms

3 rounds of server-client communication

Communication model:
e Clients can only directly talk to the server

* Assuming PKIl, a client can talk with other clients via the server with their messages
encrypted

Threat model:
e Server is semi-honest (trying to violate privacy)
 Clients can be arbitrarily malicious (trying to disrupt the aggregation)
» A (static) bounded fraction of malicious clients

Key idea: co-design aggregation and proof

* A secure aggregation protocol with very simple arithmetic computation

* Each client can write their proof statements as inner-product relation

An inner-outer aggregation paradigm

Tool: key-and-message homomorphic encryption Re-gev . encryPtion:
linear operations

-4
@
S S
“Outer” > e - o
a9 9 Enc(s;,x;) =|y;
X4 - &
X7
A share of s;
\.)
“Inner” - ;
@ Py
@
ah P-4

[_Se;;gregation on s;]

Easy to handle dropouts

If a client drops,
no impact on subsequent steps

-4
@
P S
“Outer” m -51 - -
arfas 3 Enc(s;, x;) =|y;
X, o M
X5

“Inner”

A~
@ P
= ‘ If a committee-client drops,
majority can continue

10

Resisting disruption

4)
Inner-product relation
\§ J
“Inner” -
9 e
@
- b4

Commit(s;)
Commit(x;)

Enc(s;, x;) =|y;

T

Help with aggregating s; for
those who send valid proofs

@hcjck all the proofs]

11

Evaluation setup

* Client:
* MacBook Air, Apple M2, 8GB RAM
* Benchmarks using a single thread

e Server:

* Google Cloud Platform
* Instance Type: n2-standard-8 (8 vCPUs, 32 GB RAM)
 Benchmarks using 8 threads

12

Robustnhess can be achieved with reasonable cost

 Client: without proof, only on the order of millisecond; with proof, 1-10 seconds

depending on input size

Computation Cost at Input Length 1K

|
Packed sharing 967 ms
Encrypt-and-share

Masking .26 ms

Commit [§16:98 ms

Scrape test proof

Enc linear proof 8e0.00 ms

Commit-and-prove

L2 norm proof P0.00 ms

Lo RO PO [e e

750 1000 1250 1500 1750

Time (ms)

0 250 500

1.74 s

Packed sharing

Masking

Commit

Scrape test proof

Enc linear proof

L2 norm proof

L norm proof

Computation Cost at Input Length 16K
|

29.67 ms

Encrypt-and-share

1.07 ms

14125

6000 8000 10000 12000 14000

Time (ms)

0 2000 4000

13

Robustnhess can be achieved with reasonable cost

» Server computation is highly parallelizable

* Batch verification: computation scales only logarithmic with number of clients

214
Proof verification
3.5 Decoding 214
3.0{ == Addition J14
U 25 14
2
‘?_Un# l I 213
g 2.0+ i3
=] 213
- 1.5 513 l I 12
1.0 - 213
] 212 l
212 11- 211. 211
0.5 2102_11- 2_102_ 2_10- 2_10-
0.0 . - - -
500 1000 1500 2000

Number of Clients n

Summary @A

* Making secure aggregation robust is practically feasible

* What's next?
e Reducing cost for proof of infinity norm (the current bottleneck)
e Other useful metrics to verify
* Privacy against a dynamic adversary

Thanks!

15

	Slide 1: Armadillo: Robust Secure Aggregation for Federated Learning with Input Validation
	Slide 2: The secure aggregation problem: motivation
	Slide 3: The secure aggregation problem
	Slide 4: The secure aggregation problem
	Slide 5: Challenges and goals
	Slide 6: What progress has been made so far?
	Slide 7: This work
	Slide 8: Key idea: co-design aggregation and proof
	Slide 9: An inner-outer aggregation paradigm
	Slide 10: Easy to handle dropouts
	Slide 11: Resisting disruption
	Slide 12: Evaluation setup
	Slide 13: Robustness can be achieved with reasonable cost
	Slide 14: Robustness can be achieved with reasonable cost
	Slide 15: Summary

