
Armadillo: Robust Secure Aggregation for
Federated Learning with Input Validation

Yiping Ma Yue Guo Harish Karthikeyan Antigoni Polychroniadou

1

The secure aggregation problem: motivation

People’s habit of
setting password?

Browsing
statistics?

Average blood pressure
in young population?

Transaction patterns
of the general public?

2

The secure aggregation problem

𝐱1
𝐱2 …

Client 𝑖 has an input 𝐱𝑖 Goal: Learn only 𝑓(𝐱1, 𝐱2, …)

Correctness: if everyone follows the protocol, then the server gets 𝑓(𝐱1, 𝐱2, …)

Privacy: the server only learns 𝑓(𝐱1, 𝐱2, …) but nothing else

3

The secure aggregation problem

𝐱1
𝐱2 …

Client 𝑖 has an input 𝐱𝑖 Goal: Learn only 𝑓(𝐱1, 𝐱2, …)

Robustness: even when some clients misbehave, the server can always learn
𝑓(𝐱1, 𝐱2, …) for those valid 𝐱𝑖’s.

4

Challenges and goals

Clients have limited computation and bandwidth

Client failures happen quite often and unpredictably

Malicious clients can actively react in the execution

Efficiency

Tolerating dropouts

Withstand malicious behavior
5

What progress has been made so far?

→ means more efficient

Bonawitz et al. 2017 Bell et al. 2020 Flamingo (2023)

Eiffel (2022) ACORN (2023),
OPA (2025)

Abort when malicious
behavior detected

Withstand malicious behavior This work

Handling dropouts

6

7

• Robustness guarantee: server only learns the sum of client inputs with valid 𝐿2, 𝐿∞ norms

• 3 rounds of server-client communication

• Communication model:

• Clients can only directly talk to the server

• Assuming PKI, a client can talk with other clients via the server with their messages
encrypted

• Threat model:

• Server is semi-honest (trying to violate privacy)

• Clients can be arbitrarily malicious (trying to disrupt the aggregation)

• A (static) bounded fraction of malicious clients

This work

8

Key idea: co-design aggregation and proof

• A secure aggregation protocol with very simple arithmetic computation

• Each client can write their proof statements as inner-product relation

An inner-outer aggregation paradigm

𝐱1
𝐱2 …

Enc 𝐬𝑖 , 𝐱𝑖 = 𝐲𝑖

෍

𝑖

𝐲𝑖 = Enc(෍

𝑖

𝐬𝑖 , ෍

𝑖

𝐱𝑖)

“Outer”

“Inner”

Secure aggregation on 𝐬𝑖

Regev’s encryption:
linear operations

Tool: key-and-message homomorphic encryption

9

A share of 𝐬𝑖

Easy to handle dropouts

𝐱1
𝐱2 …

Enc 𝐬𝑖 , 𝐱𝑖 = 𝐲𝑖

෍

𝑖

𝐲𝑖 = Enc(෍

𝑖

𝐬𝑖 , ෍

𝑖

𝐱𝑖)

“Outer”

“Inner”

If a client drops,
no impact on subsequent steps

If a committee-client drops,
majority can continue

10

Resisting disruption

Enc 𝐬𝑖 , 𝐱𝑖 = 𝐲𝑖

“Inner”

“Encryption is correctly computed”

“𝐱𝑖 has legitimate norms”

“Shares of 𝐬𝑖 are consistent with
its commitment”

Commit(𝐬𝑖)
Commit(𝐱𝑖)

*The error vector in Regev’s encryption needs
to be committed and proven norm as well

Batch check all the proofs

Help with aggregating 𝐬𝑖 for
those who send valid proofs

11

Inner-product relation

Evaluation setup

• Client:
• MacBook Air, Apple M2, 8GB RAM

• Benchmarks using a single thread

• Server:
• Google Cloud Platform

• Instance Type: n2-standard-8 (8 vCPUs, 32 GB RAM)

• Benchmarks using 8 threads

Mention vector length: small scale model

Mention good properties: no need to wait

evaluation setup : what machine one core, cpu

12

Robustness can be achieved with reasonable cost

• Client: without proof, only on the order of millisecond; with proof, 1-10 seconds
depending on input size

Mention vector length: small scale model

Mention good properties: no need to wait

evaluation setup : what machine one core, cpu

13

Commit-and-prove

Encrypt-and-share

Commit-and-prove

Encrypt-and-share

Robustness can be achieved with reasonable cost

• Server computation is highly parallelizable

• Batch verification: computation scales only logarithmic with number of clients

Benchmarked using 8 cores

14

Summary

• Making secure aggregation robust is practically feasible

• What’s next?

• Reducing cost for proof of infinity norm (the current bottleneck)

• Other useful metrics to verify

• Privacy against a dynamic adversary

15

Thanks!

	Slide 1: Armadillo: Robust Secure Aggregation for Federated Learning with Input Validation
	Slide 2: The secure aggregation problem: motivation
	Slide 3: The secure aggregation problem
	Slide 4: The secure aggregation problem
	Slide 5: Challenges and goals
	Slide 6: What progress has been made so far?
	Slide 7: This work
	Slide 8: Key idea: co-design aggregation and proof
	Slide 9: An inner-outer aggregation paradigm
	Slide 10: Easy to handle dropouts
	Slide 11: Resisting disruption
	Slide 12: Evaluation setup
	Slide 13: Robustness can be achieved with reasonable cost
	Slide 14: Robustness can be achieved with reasonable cost
	Slide 15: Summary

