
Single-Server Private Information Retrieval (PIR)
in the Shuffle Model

1

Yiping Ma

Based on joint work with Adrià Gascón, Yuval Ishai,
Mahimna Kelkar, Daniel Lee, Baiyu Li, and Mariana Raykova

Information retrieval nowadays

2

Database server

Client

“Where to stay
at Evanston”

“IHG Hotel”

3

Top 10 queries
on Google starting with

4

Top 10 queries
on Google starting with

Private information retrieval (PIR) [CGKS95, KO97]

Database server

Client

“Where to stay
at Evanston”

“IHG Hotel”

I get the answer
“IHG Hotel”

I know nothing
about the query

5

Private information retrieval (PIR) [CGKS95, KO97]

Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖

Query Answer

6

The trivial solution is expensive

Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖

Download the whole database

7

Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖

Query Answer
We want small communication

Our efficiency goals

8

We want fast server computation

How far are we from the goals?
8GB database: 218 entries of 32KB (size of a pdf document of a few pages)

9

High computation

High communication

Our goal

Non-private setting

Background: PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries

Computational

• Secure against poly-time adversaries

10

Security

Single-server IT PIR is only possible when we
allow 𝑛 bits of communication [CGKS95]

Background: PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries

• Enforce non-collusion among the
database servers

Computational

• Secure against poly-time adversaries

• No need for non-colluding assumption
on the database server

Hard to ensure
when data is held by

a single entity

11

Security

System
assumption

Background: PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries

• Enforce non-collusion among the
database servers

• Require database replication across
multiple servers

• Often efficient in practice (no
cryptographic operations)

Computational

• Secure against poly-time adversaries

• No need for non-colluding assumption
on the database server

• No database replication, a single server
suffices

• Expensive server cost because of
cryptogaphic operations

12

Security

System
assumption

Efficiency
(storage)

Efficiency
(comp.)

Faster response Slower response

Background: PIR in two flavors

Information-theoretic Computational

13

1 0 0 0 1 0 1 0 0 0 1 0

𝑛 bits
𝑛 by 𝑛

0 0 1 0

Query = Share 1 + Share 2

Share 2 of queryShare 1 of query

Server 1 Server 2

Background: PIR in two flavors

Information-theoretic Computational

14

1 0 0 0 1 0 1 0 0 0 1 0

0 0 1 0

Share 2 of queryShare 1 of query

Server 1 Server 2

Additive HE

Query = Share 1 + Share 2

𝑛 bits
𝑛 by 𝑛

Best of both worlds?

Information-theoretic

• Secure against unbounded adversaries

• Enforce non-collusion among the
database servers

• Require database replication across
multiple servers

• Often efficient in practice (no
cryptographic operations)

Computational

• Secure against poly-time adversaries

• No need for non-colluding assumption
on the database server

• No database replication, a single server
suffices

• Expensive server cost because of
cryptogaphic operations

Security

System
assumption

Efficiency
(storage)

Efficiency
(comp.)

Do we have a sweet spot between security, efficiency and system assumption?

15

• Security must hold for even a single client

• New hope: relaxed security by considering multiple clients

PIR in the shuffle model

The shuffle model [IKOS06]
Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

“The standard model”

16

• Purpose: anonymization

• A popular model in
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

The shuffle model

Server

Shuffler

17

• Purpose: anonymization

• A popular model in
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

• In our PIR setting:
• We assume it is two-way

• Can be instantiated by, e.g., Tor

• Or can be viewed as a second shuffle server
who does not hold the database

The shuffle model

Server

Shuffler

18

Permute (…)
InversePermute(…)

A hybrid model between
single-server and two-server

PIR in the shuffle model: Our results

• Result 1: Single-server IT secure PIR with sublinear communication is
theoretically feasible in the shuffle model

• Impossibility result [CGKS95]: For single-server IT-PIR in the standard model, the
only way out is requiring 𝑛 bits communication

19

PIR in the shuffle model: Our results

• Result 1

Theorem (Informal).
For every 𝛾 > 0, there is a single-server PIR in the shuffle model such that, on
database size 𝑛, has 𝑂(𝑛𝛾) per-query communication and computation with
1/poly(𝑛) statistical security (assuming one-time preprocessing), as long as
poly(𝑛) clients simultaneously accessing the database.

Throughout this talk, we omit polylog 𝑛 factors.

20

PIR in the shuffle model: Our results

• Result 1: Single-server IT secure PIR with sublinear communication is
theoretically feasible in the shuffle model

 Drawback of result 1: requiring too many clients querying at the same time

• Result 2: Single-server computationally secure PIR in the shuffle
model that has concretely small communication and computation,
and requires a reasonable number of simultaneously querying clients

21

[IKOS06] initialized the study of PIR from anonymity, but their construction relies on
non-standard computational assumptions and is not concretely efficient.

Our result 2: a new design space
8GB database: 218 entries of 32KB (size of a pdf document of a few pages)

22

Non-private setting

Our result 2

• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without
padding

• Discussion and open questions

Rest of this talk

23

Anonymization does not trivialize the PIR problem

24

The shuffler hides who sends which message,
but does not hide the message itself

What we want for security

𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′

𝑖1
′ 𝑖2

′ … 𝑖𝐶
′𝑖1 𝑖2 … 𝑖𝐶

25

The split-and-mix paradigm [IKOS06]

5 1 0 3 8

4+10+11 6+14+1 16+2+2 14+2+7 17+2+9

Take a large enough 𝑝, each client
splits its inputs into 𝑘 shares in ℤ𝑝

E.g., 𝑝 = 20, 𝑘 = 3

26

A secure sum
problem

The split-and-mix paradigm [IKOS06]

5 1 0 3 8

4+10+11 6+14+1 16+2+2 14+2+7 17+2+9

Take a large enough 𝑝, each client
splits its inputs into 𝑘 shares in ℤ𝑝

Shuffle all the shares

Sum up all the shares
in ℤ𝑝

27

A secure sum
problem

Security formalization of split-and-mix

1 1 1 1 1 5 0 0 0 0

Each input is split into 𝑘 shares

Any two different sets of
inputs with equal sum
Any two different sets of

inputs with equal sum

Each input is split into 𝑘 shares

280 1 p-1 0 1 p-1

𝑉𝑖𝑒𝑤(1,1,1,1,1)

Security formalization of split-and-mix

1 1 1 1 1 5 0 0 0 0

Each input is split into 𝑘 shares

Any two different sets of
inputs with equal sum
Any two different sets of

inputs with equal sum

Each input is split into 𝑘 shares

290 1 p-1 0 1 p-1

𝑉𝑖𝑒𝑤(1, 1, 1, 1, 1) 𝑉𝑖𝑒𝑤(5, 0, 0, 0, 0)

≈

Split-and-mix as a tool

5 1 0 3 8

4+10+11 6+14+1 16+2+2 14+2+7 17+2+9

Take a large enough 𝑝, each client
splits its inputs into 𝑘 shares in ℤ𝑝

Shuffle all the shares

30

Split-and-mix provides privacy against the
observer, subject to leaking only the sum

• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without
padding

• Discussion and open questions

Rest of this talk

31

Split each query into
additive shares?

Answer to each share

IT-PIR from split-and-mix

𝑞1 𝑞2𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2

𝑞 𝑞 𝑞 𝑞 𝑞

32

Permute (…)
InversePermute(…)

The key idea is to view the multi-server PIR
in the additive sharing paradigm

• Sub-queries are additive shares

• Answer algorithm is simply 𝑃𝑥(share)

IT-PIR from split-and-mix

The sub-queries 𝑞1, 𝑞2 are
additive shares of (the encoding of) index 𝑖

𝑎2𝑎1

𝑎1 ← 𝑃𝑥(𝑞1) 𝑎2 ← 𝑃𝑥(𝑞2)

𝑥 = 0, 1 𝑛 𝑥 = 0, 1 𝑛

𝑞2
𝑞1

𝑖 ∈ [𝑛]

33

[BIK04]
𝑂(log 𝑛) query size
𝑂(𝑛) answer size

Query using the two-server
“additive PIR” protocol

Only learns the sum of all
sub-queries but nothing else

IT-PIR from split-and-mix

𝑞1 𝑞2𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2

𝑞 𝑞 𝑞 𝑞 𝑞

34

Are we done?

• 2-share is not enough to provide privacy: a simple example in ℤ2

All clients with input 0 v.s. All clients with input 1

 0 can be split to 0+0 or 1+1 1 can only be split to 0+1

IT-PIR from split-and-mix

Exactly equal #0s and #1s
in the shares!

#0s and #1s may not be
exactly equal

Similar attack also
generalizes to ℤ𝑝

35

• Can we split to more shares? Yes, but worse efficiency:

The 𝑘-server “additive PIR” in [BIK04] gives communication 𝑂(𝑛
𝑘−1

𝑘)

IT-PIR from split-and-mix

Our technique:
Randomize the query index for the “additive PIR”

using an outer layer of PIR

Communication 𝑂(𝑛
1

2 polylog(𝑛))
36

General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

Recall the problem

∈ [𝑛]

When 𝑖1, 𝑖2, … , 𝑖𝐶 and 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′ are far apart, e.g., 1 1 1 1 1 v.s. 2 2 2 2 2

𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶 and 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′ are also far apart

Given any set of query indices

Learns nothing
(except the sum)

37

General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

A step forward

∈ [𝑛]

If we can make 𝑖1, 𝑖2, … , 𝑖𝐶 and 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′ closer, e.g., 1 2 3 4 4 v.s. 1 2 3 4 5

Would 𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶 and 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′ be close?

Given any set of query indices

Learns nothing
(except the sum)

Our proof technique

1 1 1 1 1 v.s. 2 2 2 2 2
$

Our construction technique

38

General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3How to randomize the indices?

𝑞1
𝑞2 𝑞3

Let 𝒬 be the space that consists of all
possible sub-queries

An important observation

Consider PIR query algorithm:
 (𝑞1, 𝑞2, 𝑞3) ← 𝑄𝑢𝑒𝑟𝑦(𝑖; 𝑟)

For any given 𝑖 ∈ [𝑛], each sub-query e.g.,
𝑞1 is uniformly random over 𝒬

∈ [𝑛]

“Outer PIR”

39

General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm

What we get from outer PIR

𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

Sort all sub-queries in 𝒬

A list with size 𝑛∗ = |𝒬|

Interpret as indices

0000 0001 0010 0011 … 1111

0001

2

1 2 3 4 … 𝑛∗

Outer PIR with O(log 𝑛)
query size

Each random in 𝒬

Each random in [𝑛∗] ∈ [𝑛∗]

40

General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

𝑃𝑥(0000)

Inner PIR with random query indices

Inner PIR database size 𝑛∗ = |𝒬|

∈ [𝑛∗]

𝑃𝑥(1111)𝑃𝑥(0001) …

Use the two-server “additive” PIR

Recall: not secure if doing
”additive PIR” directly here

Answers in outer PIR

41

General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

On any query indices

∈ [𝑛∗]

Use inner PIR for retrieve answers;
Inner PIR sub-queries are shuffled

A brief summary

Interpret as indices for inner PIR

𝑃𝑥(0000) 𝑃𝑥(1111)𝑃𝑥(0001) … Size 𝑛∗ The server prepares this in advance

Outer PIR: sub-query size 𝑂(log 𝑛)

Inner PIR: The two-
server “additive PIR”

A single server!
42

General constructions: an “inner-outer” paradigm

Theorem (Informal).
On any database size 𝑛, the “inner-outer” construction with any outer PIR and the
two-server additive inner PIR, gives a single-server PIR in the shuffle model that
has 1/poly(𝑛) statistical security and 𝑂(𝑛) per-query communication, assuming
poly(𝑛) clients simultaneously accessing the database.

Corollary (Informal).
Using fancier inner PIR (“CNF PIR”), on any database size 𝑛, for every constant 𝛾,
there is a PIR construction that has
• Per-query communication and computation 𝑂 𝑛𝛾 ,
• Server storage 𝑂 𝑛1+𝛾 ,
assuming one-time preprocessing.

43

• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without
padding

• Discussion and open questions

Rest of this talk

44

• Prior works only study statistical security [IKOS06, GMPV20, BBGN20]

#Clients 100 1000 10000

#Shares 𝑘 (IT. 40 bits) 6317 3856 2775

Each client input: a vector 215 × 𝔽2

45

≈𝑉𝑖𝑒𝑤(1, 1, 1, 1, 1) 𝑉𝑖𝑒𝑤(5, 0, 0, 0, 0)

Recall the security of split-and-mix

New: computational security for split-and-mix

• Prior works only study statistical security [IKOS06, GMPV20, BBGN20]

• This work studies computational security, aiming to reduce the #shares 𝑘
(and hence improving concrete efficiency)

#Clients 100 1000 10000

#Shares 𝑘 (IT. 40 bits) 6317 3856 2775

#Shares 𝑘 (Comp. 128 bits) 405 88 37

Each client input: a vector 215 × 𝔽2

46

≈𝑉𝑖𝑒𝑤(1, 1, 1, 1, 1) 𝑉𝑖𝑒𝑤(5, 0, 0, 0, 0)

Our results from computational split-and-mix

47

Computational security for split-and-mix based on SD, MDSD

Single-server secure aggregation
in the shuffle model

Single-server PIR
in the shuffle model

Up to 25X savings for communication
compared to the best statistical split-
and-mix baseline

Up to 22X improvement of throughput (in the
batch setting) over SimplePIR [HHCMV23] with
comparable communication cost

(Even giving advantage to the baseline
by compressing the shares)

Split-and-mix based on Syndrome Decoding (SD)

48

• The SD assumption (dual-LPN [BFKL94, AIK07])
𝐻: a random matrix
𝑦: a target vector (e.g., a client’s input)

𝐻

Computationally hard to find low-weight vector 𝑒 such that 𝐻 ⋅ 𝑒 = 𝑦

𝑦

Split-and-mix based on Syndrome Decoding (SD)

49

• “Multi-Disjoint” Syndrome Decoding
𝐻: a random matrix
𝑌 = [𝑦1, 𝑦2, …]: multiple target vectors (e.g., multiple client inputs)

𝐻

Computationally hard to find “low-weight” 𝐸 such that 𝐻 ⋅ 𝐸 = 𝑌

𝑦2

We generalize SD to
Multi-Disjoint Syndrome Decoding

to handle multiple clients

𝑦1

The positions of 1 in E’s
columns are disjoint

Starting point: a classic multi-server PIR

…

0 0 1 0
Query vector 𝑣

Database 𝐷

𝑣 ⋅ 𝐷 = 𝑞1 + ⋯ + 𝑞𝑘 ⋅ 𝐷
 = 𝑞1 ⋅ 𝐷 + ⋯ + 𝑞𝑘 ⋅ 𝐷
 ≔ 𝑎1 + ⋯ + 𝑎𝑘

𝑞1

𝑞2
𝑞𝑘

𝑎1 𝑎2

𝑎𝑘

50

Single-server computationally PIR from split-and-mix

𝑣1 𝑣2 𝑣𝑐

…

51

A share vector

Note: no inner-outer paradigm
here, just one PIR scheme

Single-server computationally PIR from split-and-mix

…

Two-way
anonymous channel

…

𝐷, =
52

Single-server computationally PIR from split-and-mix

𝑎 𝑎 𝑎
…

Two-way
anonymous channel

…

53

Performance
8GB database, large records (218 entries of 32KB)

Assuming 100K or 1K clients
query at the same time

Assuming 100K or 1K clients
query at the same time

54

Left bottom is better

• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without
padding

• Discussion and open questions

Rest of this talk

55

• Two database servers vs. one database server + shuffler

Discussion

1. Easier to enforce
2. No storage overhead

56

Discussion

• We are in the situation of exploiting tradeoffs: making assumptions,
altering models (different types of preprocessing, relaxed security, etc.)

• Meanwhile, guaranteeing different assumptions does not require the
same amount of effort: system efforts, law efforts, etc.

• The likelihood of assumptions being compromised in real-world
scenarios may vary

57

Backup slides

58

• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same
size, mostly 0, 1 𝑛

They have
different lengths

59

• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same
size, mostly 0, 1 𝑛

They have
different lengths

To retrieve privately, it is necessary to hide record size

60

• Padding solves the problem: how about efficiency?

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Features

61

• Padding solves the problem: how about efficiency?

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Waste of server storage
(though can virtually store)

Features Client who retrieves the small record has to
pay the cost of retrieving the largest record

62

• In the “standard” model, there is no way out

• In the shuffle model: yes, we can
• No server storage overhead

• Client communication proportional to the length of the retrieved record

• Leak only the total size of all queried records

PIR with variable-sized records

63

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database

𝑇 database records

64

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records

65

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to
the queried length instead of the

maximum length

66

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to
the queried length instead of the

maximum length

Can we do better?
Yes, from ℓ PIR queries to polylogℓ PIR queries

67

• Revisit the toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records Why not retrieve more bits
in each PIR query?

68

• Splitting records to the powers of two

PIR with variable-sized records

The 𝑛-bits concatenated database

Secure or not?

Deterministic splitting is not secure
(unless split down to 1)

69

Server (logically) preprare log 𝑛 databases:
the 𝑗-th database is partitioned to 2𝑗 bits per entry

• Splitting records to the powers of two

PIR with variable-sized records

Consider 5 1 1 1 v.s. 2 2 2 2

70

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

71

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

72

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

73

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

74

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

The final blocks that the client will retrieve (using PIR)

75

• A complication of recursive splitting: fully split the highest log 𝐶 levels

PIR with variable-sized records

Consider 5 1 1 1 v.s. 2 2 2 2

With 1/2 probability, there will be a block

76

• A complication of recursive splitting: fully split the highest log 𝐶 levels

PIR with variable-sized records

Consider M-3 1 1 1 v.s. M/4 M/4 M/4 M/4

With 1/2 probability, there will be a block

77

• A complication of recursive splitting: fully split the highest log 𝐶 levels

PIR with variable-sized records

Consider M-3 1 1 1 v.s. M/4 M/4 M/4 M/4

78

As long as there are sufficient number
of blocks at this level

• Splitting records to the power of two

PIR with variable-sized records

= + +

The multi-set of record lengths
from all clients will not leak any

individual queried length

= +

The largest block ≥ maximum record size/2

79

	Slide 1: Single-Server Private Information Retrieval (PIR) in the Shuffle Model
	Slide 2: Information retrieval nowadays
	Slide 3
	Slide 4
	Slide 5: Private information retrieval (PIR) [CGKS95, KO97]
	Slide 6: Private information retrieval (PIR) [CGKS95, KO97]
	Slide 7: The trivial solution is expensive
	Slide 8: Our efficiency goals
	Slide 9: How far are we from the goals?
	Slide 10: Background: PIR in two flavors
	Slide 11: Background: PIR in two flavors
	Slide 12: Background: PIR in two flavors
	Slide 13: Background: PIR in two flavors
	Slide 14: Background: PIR in two flavors
	Slide 15: Best of both worlds?
	Slide 16: PIR in the shuffle model
	Slide 17: The shuffle model
	Slide 18: The shuffle model
	Slide 19: PIR in the shuffle model: Our results
	Slide 20: PIR in the shuffle model: Our results
	Slide 21: PIR in the shuffle model: Our results
	Slide 22: Our result 2: a new design space
	Slide 23: Rest of this talk
	Slide 24: Anonymization does not trivialize the PIR problem
	Slide 25: What we want for security
	Slide 26: The split-and-mix paradigm [IKOS06]
	Slide 27: The split-and-mix paradigm [IKOS06]
	Slide 28: Security formalization of split-and-mix
	Slide 29: Security formalization of split-and-mix
	Slide 30: Split-and-mix as a tool
	Slide 31: Rest of this talk
	Slide 32: IT-PIR from split-and-mix
	Slide 33: IT-PIR from split-and-mix
	Slide 34: IT-PIR from split-and-mix
	Slide 35: IT-PIR from split-and-mix
	Slide 36: IT-PIR from split-and-mix
	Slide 37: General constructions: an “inner-outer” paradigm
	Slide 38: General constructions: an “inner-outer” paradigm
	Slide 39: General constructions: an “inner-outer” paradigm
	Slide 40: General constructions: an “inner-outer” paradigm
	Slide 41: General constructions: an “inner-outer” paradigm
	Slide 42: General constructions: an “inner-outer” paradigm
	Slide 43: General constructions: an “inner-outer” paradigm
	Slide 44: Rest of this talk
	Slide 45: Recall the security of split-and-mix
	Slide 46: New: computational security for split-and-mix
	Slide 47: Our results from computational split-and-mix
	Slide 48: Split-and-mix based on Syndrome Decoding (SD)
	Slide 49: Split-and-mix based on Syndrome Decoding (SD)
	Slide 50: Starting point: a classic multi-server PIR
	Slide 51: Single-server computationally PIR from split-and-mix
	Slide 52: Single-server computationally PIR from split-and-mix
	Slide 53: Single-server computationally PIR from split-and-mix
	Slide 54: Performance
	Slide 55: Rest of this talk
	Slide 56: Discussion
	Slide 57: Discussion
	Slide 58: Backup slides
	Slide 59: PIR with variable-sized records
	Slide 60: PIR with variable-sized records
	Slide 61: PIR with variable-sized records
	Slide 62: PIR with variable-sized records
	Slide 63: PIR with variable-sized records
	Slide 64: PIR with variable-sized records
	Slide 65: PIR with variable-sized records
	Slide 66: PIR with variable-sized records
	Slide 67: PIR with variable-sized records
	Slide 68: PIR with variable-sized records
	Slide 69: PIR with variable-sized records
	Slide 70: PIR with variable-sized records
	Slide 71: PIR with variable-sized records
	Slide 72: PIR with variable-sized records
	Slide 73: PIR with variable-sized records
	Slide 74: PIR with variable-sized records
	Slide 75: PIR with variable-sized records
	Slide 76: PIR with variable-sized records
	Slide 77: PIR with variable-sized records
	Slide 78: PIR with variable-sized records
	Slide 79: PIR with variable-sized records

