
Incremental Offline/Online PIR

1

Yiping Ma Ke Zhong Tal Rabin Sebastian Angel

Appeared at USENIX Security 2022

2

Private Information Retrieval (PIR): Basics
[CGKS95, KO97]

Correctness

Security

“Client gets the bits it wants“
 (with overwhelming probability)

“Server learns nothing from client’s queries”
 (information-theoretic or computational)

Server has a database
 𝑥 = 𝑥!𝑥"…𝑥# ∈ 0,1 #

Client wants to read an item 𝑥$
without revealing the index 𝑖

Query Answer

We will later discuss privacy against clients

3

Private Information Retrieval (PIR): Why interesting?

Client wants to read an item 𝑥$
without revealing the index 𝑖

Query Answer

Server has a database
 𝑥 = 𝑥!𝑥"…𝑥# ∈ 0,1 #

Black-box extensions
longer entries [CGN98],
keyword query [CGN98],
batched fetching [IKOS04], etc.

Real-world
Applications

4

Private Information Retrieval (PIR): Applications

Systems built from PIR

Private contact discovery [DP5, PETS15]
Private stream service [Popcorn, NSDI16]
Metadata-private messaging [Pung, OSDI16]
Private search [DORY, OSDI20; Coeus, SOSP21]
Safe browsing [Checklist, Sec21]
Private key-value store [Pantheon, VLDB23]

 … and many more
Client wants to read an item 𝑥$
without revealing the index 𝑖

Query Answer

Server has a database
 𝑥 = 𝑥!𝑥"…𝑥# ∈ 0,1 #

Systems built from PIR

Private contact discovery [DP5, PETS15]
Private stream service [Popcorn, NSDI16]
Metadata-private messaging [Pung, OSDI16]
Private search [DORY, OSDI20; Coeus, SOSP21]
Safe browsing [Checklist, Sec21]
Private key-value store [Pantheon, VLDB23]

 … and many more

5

Private Information Retrieval (PIR): Applications

Client wants to read an item 𝑥$
without revealing the index 𝑖

Query Answer

Server has a database
 𝑥 = 𝑥!𝑥"…𝑥# ∈ 0,1 #

AVL UnAVL UnAVL AVL AVL AVL

6

Private Information Retrieval (PIR): Efficiency

Cost is critical for applications:

• Communication
• Computation

“work” [BIM04]:
 #bits the server reads

• Storage

Client wants to read an item 𝑥$
without revealing the index 𝑖

Query Answer

Measure in terms of database size 𝑛

Server has a database
 𝑥 = 𝑥!𝑥"…𝑥# ∈ 0,1 #

• Trivial PIR has linear communication

7

Reducing Communication Cost for PIR

Answer

• Trivial PIR has linear communication
• PIR with sublinear communication

8

Reducing Communication Cost for PIR

Non-colluding servers, database replicated

Information-theoretic
[CGKS95, BIK04, Yek08,
Efr12, DG16, …]

Computational
[BGI16, …]

Computational
[KO97, CMS99, KO00,
GR05, OS07, …]

Information-theoretic
[KO97]
Not possible unless
linear communication

Many schemes,
Some almost optimal

Single server

• Trivial PIR has linear computation or “work” [BIM00]

• PIR with sublinear computation?

9

Reducing Computation Cost for PIR?

A lower bound [BIM00]:

If the database has no redundancy (i.e., no extra storage at the server or the
client), answering a single query requires in expectation Ω 𝑛 total server
“work”, where 𝑛 is database size.

• Trivial PIR has linear computation or “work” [BIM00]

• PIR with sublinear computation?

10

Reducing Computation Cost for PIR?

A lower bound [BIM00]:

If the database has no redundancy (i.e., no extra storage at the server or the
client), answering a single query requires in expectation Ω 𝑛 total server
“work”, where 𝑛 is database size.

Linear computation makes PIR hard to scale to large databases

• Trivial PIR has linear computation or “work” [BIM00]

• PIR with sublinear computation: hope?

11

Reducing Computation Cost for PIR?

A lower bound [BIM00]:

If the database has no redundancy (i.e., no extra storage at the server or the
client), answering a single query requires in expectation Ω 𝑛 total server
“work”, where 𝑛 is database size.

Push (necessary) linear work to an offline stage and generate hints along
the way…

and get sublinear computation for each query with the hints!

 [BIM00, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, CHK22, …]

12

PIR with
preprocessing

Reducing Computation Cost for PIR: An important idea

Push (necessary) linear work to an offline stage and generate hints along
the way…

and get sublinear computation for each query with the hints!

 [BIM00, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, CHK22, …]

13

Superlinear-sized hints at the server

Reducing Computation Cost for PIR: An important idea

PIR with
preprocessing

Push (necessary) linear work to an offline stage and generate hints along
the way…

and get sublinear computation for each query with the hints!

 [BIM00, CHR17, BIPW17, HOWW18, PPY18, CK20, SACM21, CHK22, …]

14

Offline/Online model

Sublinear-sized hints at the client

Reducing Computation Cost for PIR: An important idea

Our work is based
on this flavor

• Preprocessing phase: (super) linear computation, generate hints
• Preprocessing can be done only by the servers [BIM00, BIPW17, CHR17]

or interactive with clients (per-client) [PPY18, CK20, KC21, SACM21, CHK22]
• Hints can be stored at the server or the clients

• Query phase: sublinear computation for each query utilizing the hints
• #Queries can be unbounded or polynomially many

15

PIR with Preprocessing

Sublinear computation and sublinear communication

: Are we done?

16

PIR with Preprocessing in Applications

PIR

17

9:00 AM
Preprocessing

9:10 AM
Answer 3 queries

…

9:12 AM
Add 2 more items

Hint no longer work!

PIR with Preprocessing in Applications

18

PIR with Preprocessing: More things to do

Databases are not static,
but old hints no longer work!

19

PIR with Preprocessing: Patches

New hint

One more database

Work linear to
#additions

Features of common applications
• A handful of changes (small compared to the database size)
• Changes periodically happen

Rerun preprocessing

20

Rerun preprocessing

Features of common applications
• A handful of changes (small compared to the database size)
• Changes periodically happen

Computation linear
 in the database size

 per change

PIR with Preprocessing: Patches

21

More databases Rerun preprocessing

PIR PIR PIR PIR

Features of common applications
• A handful of changes (small compared to the database size)
• Changes periodically happen

Computation linear
 in the database size

 per change
Make many queries

PIR with Preprocessing: Patches

22

Our approach to handle dynamic database
 preserves all the properties of the solutions for the static database

PIR with Mutable Preprocessing

23

Minimum necessary server work:
linear in #additions

A single database

A small hint

Preprocessing for updates

PIR with Mutable Preprocessing

24

A single database

A new hint for the
updated database

Minimum necessary server work:
linear in #additions

Preprocessing for updates

PIR with Mutable Preprocessing

25

A single database

…

Sublinear
computation

Sublinear
communication

Preprocessing for updates Query phase

PIR with Mutable Preprocessing

• Motivation

• Our solution: update existing hints at a cost proportional to the changes
• Based on [CK20], [SACM21]
• Experimental evaluation

• Open questions

26

Rest of This Talk

• Motivation

• Our solution: update existing hints at a cost proportional to the changes
• Based on [CK20], [SACM21]
• Experimental evaluation

• Discussion

27

Rest of This Talk

Protocol-specific manner

• Motivation

• Our solution: update existing hints at a cost proportional to the changes
• Based on [CK20], [SACM21]
• Experimental evaluation

• Discussion

28

Rest of This Talk

Protocol-specific manner

• Generate “hints” in offline phase for online queries

29

A Two-Server Offline/Online PIR [CK20]

Offline server Online server

Non-colluding servers, database replicated

• Generate “hints” in offline phase for online queries

30

Offline phase Online phase

A Two-Server Offline/Online PIR [CK20]

Offline server Online server Offline server Online server

Offline server

Online serverClient generates 𝑇 = 𝜆 𝑛 random
subsets of 𝑛 ,	each of size 𝑠 = 𝑛.
Denote as 𝑆", 𝑆#, … , 𝑆$.

Database 𝑥 = 𝑥!𝑥"…𝑥#
replicated among two servers

31

Notation 𝑛 ≔ {1,2, … , 𝑛}

A Two-Server Offline/Online PIR [CK20]

Offline phase

𝜆 ensures the subsets cover
𝑛 with high probability.

Offline server

Online serverClient generates 𝑇 = 𝜆 𝑛 random
subsets of 𝑛 ,	each of size 𝑠 = 𝑛.
Denote as 𝑆", 𝑆#, … , 𝑆$.

32

A Two-Server Offline/Online PIR [CK20]

𝜆 ensures the subsets cover
𝑛 with high probability.

Offline phase

𝑆", 𝑆#, … , 𝑆$

33

𝑆", 𝑆#, … , 𝑆$

Offline server

Online server

A Two-Server Offline/Online PIR [CK20]

Offline phase

Client generates random subsets of 𝑛 ,	
 𝑆!, 𝑆", … , 𝑆%, all of size 𝑠.	

𝑘", 𝑘#, … , 𝑘$

34

𝑘", 𝑘#, … , 𝑘$

Offline server

Online server

A Two-Server Offline/Online PIR [CK20]

Offline phase

35

Offline server

Online server

ℎ", ℎ#, … , ℎ$	
where	ℎ%= ⨁ℓ∈(! 𝑥ℓ 	 (𝑗 ∈ 𝑇)

A Two-Server Offline/Online PIR [CK20]

Offline phase

(𝑆", ℎ"), (𝑆#, ℎ#), … , (𝑆$, ℎ$)	
where	ℎ%= ⨁ℓ∈(! 𝑥ℓ 	 (𝑗 ∈ 𝑇)

36

Offline server

Online server

Offline phase

A Two-Server Offline/Online PIR [CK20]

(𝑆", ℎ"), (𝑆#, ℎ#), … , (𝑆$, ℎ$)	
where	ℎ%= ⨁ℓ∈(! 𝑥ℓ 	 (𝑗 ∈ 𝑇)

37

Offline server

Online server

𝑂 𝜆𝑛 server computation
𝑂(𝜆 𝑛) client storageOffline phase

A Two-Server Offline/Online PIR [CK20]

38

Query index 𝑖 ∈ [𝑛]: find
a set 𝑆& that contains 𝑖

(𝑆", ℎ"), (𝑆#, ℎ#), … , (𝑆$, ℎ$)	
where	ℎ%= ⨁ℓ∈(! 𝑥ℓ 	 (𝑗 ∈ 𝑇)

Offline server

Online server

Online phase

A Two-Server Offline/Online PIR [CK20]

Membership check: can be done efficiently via one PRP callMembership check: can be done efficiently via one PRP call

39

Query index 𝑖 ∈ [𝑛]: find
a set 𝑆& that contains 𝑖

(𝑆%, ℎ%)

Offline server

Online server

Online phase

A Two-Server Offline/Online PIR [CK20]

40

Query index 𝑖 ∈ [𝑛]: find
a set 𝑆& that contains 𝑖

(𝑆%, ℎ%)

Offline server

Online server

Online phase

A Two-Server Offline/Online PIR [CK20]

𝑆%\{𝑖}

ℎ∗ =	⊕%∈(!\{,} 	𝑥%

(𝑆%, ℎ%)

41

With exact probability 1 − '(!
#

 , remove 𝑖 from 𝑆& ;
 With the remaining probability, remove another random element from 𝑆&.

= 𝑆%∗

Offline server

Online server

Online phase

A Two-Server Offline/Online PIR [CK20]

(𝑆%, ℎ%)

42

𝑆%∗ = {19, 51, 3, 67,… }

With exact probability 1 − '(!
#

 , remove 𝑖 from 𝑆& ;
 With the remaining probability, remove another random element from 𝑆&.

= 𝑆%∗

Offline server

Online server

Online phase

A Two-Server Offline/Online PIR [CK20]

43

𝑆!∗ generated from
the query on 𝑖

A random subset of
[𝑛] with size 𝑠 − 1

With exact probability 1 − '(!
#

 , remove 𝑖 from 𝑆& ;
 With the remaining probability, remove another random element from 𝑆&.

= 𝑆%∗

(𝑆%, ℎ%)

Offline server

Online server

Online phase

A Two-Server Offline/Online PIR [CK20]

ℎ%∗	=	⊕ℓ∈(!
∗ 𝑥ℓ

44

(𝑆%, ℎ%)
Compute 𝑥, = ℎ%∗⊕ℎ%.

Offline server

Online server

𝑂(𝑛) server computationOnline phase

A Two-Server Offline/Online PIR [CK20]

ℎ%∗	=	⊕ℓ∈(!
∗ 𝑥ℓ

45

(𝑆%, ℎ%)
Compute 𝑥, = ℎ%∗⊕ℎ%.

Offline server

Online server

Correctness: with probability 1 − 67"
8

(can be made negl in followup work [KC21])

A Two-Server Offline/Online PIR [CK20]

ℎ%∗	=	⊕ℓ∈(!
∗ 𝑥ℓ

46

(𝑆%, ℎ%)
Compute 𝑥, = ℎ%∗⊕ℎ%.

Offline server

Online server

Security:
Offline phase is query-independent;

Online server sees a random subset 𝑆%∗

A Two-Server Offline/Online PIR [CK20]

ℎ%∗	=	⊕ℓ∈(!
∗ 𝑥ℓ

47

(𝑆", ℎ"), … , 𝑆%, ℎ% , … , (𝑆$, ℎ$)
Compute 𝑥, = ℎ%∗⊕ℎ%.

Offline server

Online server

A set cannot be reused

A Two-Server Offline/Online PIR [CK20]

48

(𝑆", ℎ"), … , 𝑆%, ℎ% , … , (𝑆$, ℎ$)
Compute 𝑥, = ℎ%∗⊕ℎ%.

A fresh subset from
offline server

Offline server

Online server

A Two-Server Offline/Online PIR [CK20]

• Motivation

• Our solution
• Background of [CK20], [SACM21]
• Mutable preprocessing based on [CK20]
• Experimental evaluation

• Open questions

49

Rest of This Talk

• Motivation

• Our solution
• Background of [CK20], [SACM21]
• Mutable preprocessing based on [CK20]
• Experimental evaluation

• Open questions

50

Rest of This Talk

• Additions: we will show next
• Deletions: more involved
• In-place edits: easy to see

51

Types of Database Changes

0, 1 #

52

Update Hints for Additions

Start with a toy version: add a single item

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

1 2 𝑛…

0, 1 #)!

53

Update Hints for Additions

Start with a toy version: add a single item

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

𝑆!% , 𝑆"% , … , 𝑆#% 	←
$

𝑛 + 1
 ℎ!% , ℎ"% , … , ℎ#% 	

1 2 𝑛… 𝑛 + 1

0, 1 #)!

54

Update Hints for Additions

Start with a toy version: add a single item

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

𝑆!% , 𝑆"% , … , 𝑆#% 	←
$

𝑛 + 1
 ℎ!% , ℎ"% , … , ℎ#% 	

1 2 𝑛… 𝑛 + 1

With small server computation

55

Update Hints for Additions

Start with a toy version: add a single item

Client updates each 𝑆% for 𝑗 ∈ [𝑇]:
• With probability 𝑝 = 𝑠/(𝑛 + 1) , use 𝑛 + 1 to replace a random element in 𝑆&;
• With probability 1 − 𝑝, do nothing.

0, 1 #)!

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

𝑆!% , 𝑆"% , … , 𝑆#% 	←
$

𝑛 + 1
 ℎ!% , ℎ"% , … , ℎ#% 	

1 2 𝑛… 𝑛 + 1

56

Update Hints for Additions

Start with a toy version: add a single item

0, 1 #)!

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

𝑆!% , 𝑆"% , … , 𝑆#% 	←
$

𝑛 + 1
 ℎ!% , ℎ"% , … , ℎ#% 	

1 2 𝑛… 𝑛 + 1

Analysis: roughly s/𝑛 portion of sets will change by one element;
note that 𝑠 is very small compared to 𝑛

⊕ for a changed set

57

Update Hints for Additions

Start with a toy version: add a single item

0, 1 #)!

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

𝑆!% , 𝑆"% , … , 𝑆#% 	←
$

𝑛 + 1
 ℎ!% , ℎ"% , … , ℎ#% 	

1 2 𝑛… 𝑛 + 1

Analysis: roughly s/𝑛 portion of sets will change by one element;
note that 𝑠 is very small compared to 𝑛

Cost:

⊕ for a changed set

in expectation 𝜆 XOR operations;
whereas redoing preprocessing takes 𝑂(𝜆𝑛) XOR operations

Assuming s = 𝑛
 and 𝑇 = 𝜆 𝑛

58

Update Hints for Additions

Start with a toy version: add a single item

0, 1 #)!

𝑆!, 𝑆", … , 𝑆# 	←
$

𝑛
 ℎ!, ℎ", … , ℎ#

𝑆!% , 𝑆"% , … , 𝑆#% 	←
$

𝑛 + 1
 ℎ!% , ℎ"% , … , ℎ#% 	

1 2 𝑛… 𝑛 + 1

Analysis: roughly s/𝑛 portion of sets will change by one element;
note that 𝑠 is very small compared to 𝑛

Cost:

⊕ for a changed set

in expectation 𝜆 XOR operations;
whereas redoing preprocessing takes 𝑂(𝜆𝑛) XOR operations

Communication?

• A toy version of adding a single item
• Can be extended for adding a batch of items
• Can be further extended to adding multiple batches of items

59

Update Hints for Additions

60

Update Hints for Additions

Adding a batch of items: recursively apply the toy approach

Equivalent to sampling from hypergeometric distribution
For each set 𝑆!:

• Let 𝑤 ← 𝐻𝐺 𝑡𝑜𝑡𝑎𝑙 = 𝑛 + 𝑚, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑑 = 𝑚, #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑠
• Randomly choose 𝑤 elements in 𝑆! ⊂ {1,… , 𝑛} to be replaced with

𝑤 random elements in {𝑛 + 1,… , 𝑛 + 𝑚}

In expectation 𝑂 𝜆𝑚 server work

0, 1 #)*
1 2 𝑛… 𝑛 +𝑚

61

Update Hints for Additions

Reducing communication: making the key representation compatible

Remember [CK20] builds pseudorandom sets from a PRP: 𝒦	× 𝑛 → [𝑛]:
A random subset in [𝑛] with size 𝑠 is represented by a key 𝑘 ∈ 𝒦, and the set is

	{PRP 𝑘, 1 , PRP 𝑘, 2 , … , PRP(𝑘, 𝑠)}

𝑘", … , 𝑘$ 	 → 	 𝑆", 𝑆#, … , 𝑆$

62

Update Hints for Additions

Reducing communication: making the key representation compatible

Remember [CK20] builds pseudorandom sets from a PRP: 𝒦	× 𝑛 → [𝑛]:
A random subset in [𝑛] with size 𝑠 is represented by a key 𝑘 ∈ 𝒦, and the set is

𝑆𝑒𝑡 𝑘, 𝑛, 𝑠 ≔ {PRP 𝑘, 1 , PRP 𝑘, 2 , … , PRP(𝑘, 𝑠)}

𝑘", … , 𝑘$ 	 → 	 𝑆", 𝑆#, … , 𝑆$

63

Update Hints for Additions

Reducing communication: making key representation compatible

Equivalent to sampling from hypergeometric distribution
For each set 𝑆!:

• Let 𝑤 ← 𝐻𝐺 𝑡𝑜𝑡𝑎𝑙 = 𝑛 + 𝑚, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑑 = 𝑚, #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑠
• Let 𝑈" = 𝑆𝑒𝑡 𝑘, 𝑛, 𝑠 − 𝑤 “kick out 𝑤 random old elements”
• Let 𝑈# = 𝑆𝑒𝑡 𝑘,𝑚,𝑤 + 𝑛 “add 𝑤 random new elements”
• Set	𝑆! ← 𝑈" ∪ 𝑈# “represented by “𝑘, 𝑠 − 𝑤,𝑤”

Client: no need to store set
elements (indices) explicitly

Server: 2𝑤 PRP calls per set
Total #PRP calls in expectation Θ(𝑚)

0, 1 #)*
1 2 𝑛… 𝑛 +𝑚

Offline server

Online server

#Additions 𝑚

Additions happen at both servers

64

Existing hints 𝑆", ℎ" , … , (𝑆$, ℎ$)

Update Hints for Additions

Preprocessing for updates
“Notify”

Offline server

Online server

(𝑘", 𝑤"), , … , (𝑘$, 𝑤$)

65

Update Hints for Additions

Preprocessing for updates
“Hint request”

Offline server

Online server

Parity difference: Δ", … , Δ$

66

Update Hints for Additions

𝑂(𝜆𝑚) server computation
Preprocessing for updates

“Hint response”

Offline server

Online server

Parity difference: Δ", … , Δ$

Client computes new hints
𝑆"; , ℎ"; , … , (𝑆$; , ℎ$;)	 where ℎ%; 	≔ Δ%⊕ℎ%.

67

Update Hints for Additions

Preprocessing for updates
”Hint update”

Offline server

Online server

Updated database 0,1 $!,
where 𝑛% = 𝑛 +𝑚.

Stored hints: 𝑆"; , ℎ"; , … , (𝑆$; , ℎ$;)	

68

Query index 𝑖 ∈ [𝑛]: find
a set 𝑆&+ that contains 𝑖

Update Hints for Additions

Online phase
(minor change)

Offline server

Online server𝑆%;, ℎ%;

69

With probability 1 − '(!
##

, remove 𝑖 from 𝑆&+;
With the remaining probability remove another random element from 𝑆&+.

= 𝑆%∗

𝑆&∗ = {2, 15, 9, … }

Update Hints for Additions

Online phase
(minor change)

Updated database 0,1 $!,
where 𝑛% = 𝑛 +𝑚.

Offline server

Online server𝑆𝑒𝑡(𝑘, 𝑛;, 𝑠)

70

Update Hints for Additions

Online phase
(refresh)

Updated database 0,1 $!,
where 𝑛% = 𝑛 +𝑚.

𝑘

Offline server

Online server𝑆𝑒𝑡 𝑘, 𝑛;, 𝑠 , ℎ

71

Update Hints for Additions

Online phase
(refresh)

Updated database 0,1 $!,
where 𝑛% = 𝑛 +𝑚.

𝑘

ℎ

• Supporting multiple batches of additions
• Supporting in-place edits
• Deletions: cannot actually delete when hints are stored at the client (if client is

malicious)

72

More Technical Details

• Supporting multiple batches of additions
• Supporting in-place edits
• Deletions: cannot actually delete when hints are stored at the client (if client is

malicious)

73

More Technical Details

PIR without hints PIR with hints

• Supporting multiple batches of additions
• Supporting in-place edits
• Deletions: cannot actually delete when hints are stored at the client (if client is

malicious)

74

More Technical Details

PIR without hints PIR with hints

• Supporting multiple batches of additions
• Supporting in-place edits
• Deletions: cannot actually delete when hints are stored at the client (if client is

malicious)

75

More Technical Details

PIR without hints PIR with hints

• Instead of sampling a set with fixed size, sample each element into a set with
some probability 𝑝
• The set size in expectation is 𝑛𝑝

76

High-level Ideas in [SACM21]

• Instead of sampling a set with fixed size, sample each element into a set with
some probability 𝑝
• The set size in expectation is 𝑛𝑝
• When a new item is added (hence a new index), for each set, sample the new

index into the set with probability 𝑝

77

Mutable Preprocessing from [SACM21]

Update sets in a way compatible with the key representation

• [KC21, Checklist]
• Dynamic data structure, black-box construction
• Amortize the cost over multiple added items

• Ours: make the hints mutable
• Utilize features of specific protocols

• Depending on concrete parameters (frequency of updates, item size,
etc.), provides different benefits

78

Independent work

How does our construction save server cost?
Results for adding 1% data:

79

Evaluation: Microbenchmarks

Database* size 2"< 2"= 2#>

Initial preprocessing (sec) 3.64 14.52 58.67

Update hints (sec) 0.07 0.25 1.03

*Each data item 32 bytes. Run on a machine with 2 GHz processor and 64 GB RAM, single thread

• Retrieving relay description files from Tor directory servers
• Why PIR? [PIR-Tor, Sec11]

80

Relay #1, #5, #24

Alice

Alice

Evaluation: PIR-Tor Application

Relay #5

A directory server

Relay #24

(#1, file block)
(#5, file block),
(#24, file block)

(#1, file block)
(#5, file block),
(#24, file block) Relay #1

• Retrieving relay description files from Tor directory servers
• Why PIR? [PIR-Tor, Sec11]

81

Relay #1, #5, #24

Alice

Alice Relay #5

A directory server

Relay #24

(#1, file block)
(#5, file block),
(#24, file block)

(#1, file block)
(#5, file block),
(#24, file block) Relay #1

Likely to
be Alice

Evaluation: PIR-Tor Application

• Retrieving relay description files from Tor directory servers
• Why PIR? [PIR-Tor, Sec11]

82

Use PIR to retrieve

Alice

Alice Relay #5

A directory server

Relay #24

“I don’t know who
retrieves #24”

Evaluation: PIR-Tor Application

• A server could act as the offline server for one client;
and the online server for another client
• Updates are propagated to all the servers

83

Directory servers

Offline

Online

Evaluation: PIR-Tor Application

• A server could act as the offline server for one client;
and the online server for another client
• Updates are propagated to all the servers

84

Directory servers

Offline

Online

Evaluation: PIR-Tor Application

85

Directory servers

• A server could act as the offline server for one client;
and the online server for another client
• Updates are propagated to all the servers

Evaluation: PIR-Tor Application

86

Directory servers

• A server could act as the offline server for one client;
and the online server for another client
• Updates are propagated to all the servers

Evaluation: PIR-Tor Application

Thank you!

