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Data-driven applications nowadays

Service providers collect and analyze user data
in order to provide customized functionalities.
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Data-driven applications nowadays

Simply put, to protect users at scale, we rely on machine learning powered by user
feedback to catch spam and help us identify patterns in large data sets—making it easier
to adapt quickly to ever-changing spam tactics. Gmail employs a number of Al-driven
filters that determine what gets marked as spam. These filters look at a variety of signals,
including characteristics of the IP address, domains/subdomains, whether bulk senders
are authenticated, and user input. User feedback, such as when a user marks a certain
email as spam or signals they want a sender’s emails in their inbox, is key to this filterin

process, and our filters learn from user actions. d

Ama Train a machine learning model to classify natural language text.

Elevate the customer experience with ML-powered personalization

Get started with Amazon Personalize

amazon
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Centralized vs. decentralized training

Centralized Decentralized

” (“hacked”, spam)
= Train( (“hotel”, not spam) “Federated learning” [McMahan et al. in 2016]
J (“malicious”, spam)
Many clients (users) collaboratively train a
(“hacked”Jspa model under the orchestration of a central
D “maNgious”, spam) server (service provider).

(“hotel”,\not spam) Data never leaves user devices!
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Centralized vs. decentralized training

Centralized Decentralized

p o (“hacked”, spam) g
S = Train( (“hotel”, not Spam))
a c (“malicious”, spam) d
(“hacked”[spa

(“hotel”\not spam)

0

(“maNgious”, spam) = : Update ((”hacked”, spam))

o = Update((”malicious”, spam))

5 : = Update ((”hotel”, not spam))

Local weights



Centralized vs. decentralized training

Centralized

=K = Train

J
(“hacked”]spa

(“hotel”\not spam)

0

(“maNgious”, spam)

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Decentralized

Global weights

S &
J -
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Update ((”hacked", Spam))
Update ((”malicious”, spam))

Update ((”hotel”, not spam))



Centralized vs. decentralized training

Centralized Decentralized

= + +

(“hacked”, spam)

(“hotel”, not spam)
Qalicious”, s

= Train ( (“apple”, not spam))

(“dog”, not spam)

(“lottery”, spam)

(“random”, spam)

A few hundreds to a few
thousands of clients




Centralized vs. decentralized training

Centralized

(“hacked”, spam)
(“hotel”, not spam)
(“malicigus”, spam)
apple”, not spam
(“dog”, not spam)
Jottery”, spam)
(“randomT“spam)

Decentralized




Centralized vs. decentralized training

Centralized

(“hacked”, spam)

(“hotel”, not spam)
" e (“malicious”, spam)
sk = Train| (“apple”, not spam))
| “dog”, not spa
(“lottery”, spam)
“random”, spam)

Decentralized




Federated learning: steps forward

* Weights do not necessarily hide data: inference attack
[Zhu et al. 2019]

(“hacked”, spam)
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Federated learning: steps forward

* Weights do not necessarily hide data: inference attack
[Zhu et al. 2019]

(“hacked”, spam)

* Training does not need individual weights; only the sum is needed
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Secure aggregation for federated learning

* Secure aggregation (A special case of MPC [Yao 1986])

Only learns x1 + x, + x3

Some
interactions

Many works under different communication
models, cryptographic assumptions, etc.

Secret sharing

[KRKR 2020], [DSQG+ 2022], ...
Threshold homomorphic encryption
[SGA 2021], [SHYL+ 2022], ...
Pairwise masking

[BIKM+ 2017], [BBGLR 2020], ...
Other styles

[SSVR+ 2022], [GPSBB 2022], ...
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Secure aggregation for federated learning

* Secure aggregation (A special case of MPC [Yao 1986])

Concrete efficiency but not asymptotics
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Federated learning has complex setting

* From the federation side—restricted clients (mobile devices)

* From the machine learning side—large parameters



Federated learning has complex setting

* From the federation side—restricted clients (mobile devices)

* Limited computation power Lightweight client computation

Tolerate dropouts at any point

e Unstable network connection

* From the machine learning side—large parameters
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Federated learning has complex setting

* From the federation side—restricted clients (mobile devices)
* Limited computation power
* Unstable network connection

- From the machine learning side—large parameters (b e ElEEes

* Inputs: model weights, e.g., “500K in popular models for CIFAR100
* Participants: 100-5000 per iteration
* Training: many iterations, e.g., ¥300 for CIFAR100
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Prior designs are not the best fit for a full training

* From the federation side—restricted clients (mobile devices)
* Limited computation power
* Unstable network connection

* From the machine learning side—large parameters
* Inputs: model weights, e.g., 500K in popular models for CIFAR100
. Part|C|pants 100-5000 per iteration
= Tralnlng many iterations, e.g., “300 for CIFAR100

— —

—
-—

One summation: multiple round trips, some of which are expensive
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Having fewer round trips is important

e Reduce bias and improve quality

Some
interactions

e Reduce run time
Will discuss in evaluation section
why round trips matter a lot
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We propose Flamingo

* From the federation side—restricted clients (mobile devices)

* Limited computation power Lightweight client computation

* Unstable network connection
Tolerate dropouts at any point

* From the machine learning side—large parameters (&0 erane i o
* Inputs: model weights, e.g., “500K in popular models for EEEAT training session
* Participants: 100-5000 per iteration
* Training: many iterations, e.g., “300 for CIFAR100

Same threat model as in prior work: a malicious adversary controlling

the server and a subset of the clients

19



Flamingo has two key ideas

* A fault-tolerant private sum protocol
based on pairwise secrets and threshold decryption

* A way to reuse pairwise secrets over many iterations

20



Semi-honest

A fault-tolerant private sum protocol

) ] BIKM+ 2017,
Pairwise secrets - BBGLR 2020

Alice
x_1> — —>
/ Vy = X1 +PRG( )+ PRG(5:3)
X2 Sya x3
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Semi-honest

A fault-tolerant private sum protocol

. . BIKM+ 2017, ”
Pairwise secrets - BBGLR 2020 J

Take some cost
to set them up Alice

22



Semi-honest

A fault-tolerant private sum protocol

. BIKM+ 2017, V ad
Pairwise secrets - BBGLR 2020 J
3 3
Y-y
=1 i=1
Take some cost
to set them up Alice
X1
517 \513
Bob Charlie

Efficient despite large inputs
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Semi-honest

A fault-tolerant private sum protocol

Pairwise secrets

X3 @ v; = X3 —PRG(:,,) HF
$23

Bob Charlie
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Semi-honest

A fault-tolerant private sum protocol

Threshold decryption

~~

Ali}e\

F

—-

—_—
—

o~
1 J

= Xx; +PRG(5,,) +PRG(5,3)

-_—om =—

nc(PK,s )
nc(PK, 51;):
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Semi-honest

A fault-tolerant private sum protocol

Recovery is lightweight

Alice Decryptors

o~
<J

Threshold decryption

4]

—

X1
S]_y
Xz

Ym

S13
Bob Charlie

A random (small) subset of clients

WiEnc(PK, 5. ) W Enc(PK,s,,)

<

>
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Semi-honest

A fault-tolerant private sum protocol

”
Threshold decryption 7

V1 V2 Sq3 S23

Alice

—

X1
Xz

S$13
\ v; = Xz —PRG(5;,)+PRG(s23)
$23

Bob Charlie
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Semi-honest

A fault-tolerant private sum protocol

”
Threshold decryption 7

Alice
X1
v, = x; +PRG(5,,)+PRG(5:3)
/ \ v; = Xz —PRG(5;,)+PRG(s23)
Xz
523 — PRG ( ) — PRG(Szg)
Bob Charlie

v; +v; — PRG (513) — PRG(s5,3) = X + X;
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Semi-honest

REUSing the Secrets Simple idea, but cannot work for [BBGLR 2020] due

to a crucial design difference for fault tolerance

Alice
Essentially OTP X7
. Vi = X1 +PRG( )+PRG(s )
/ \13

Xz X3
$23

Bob Charlie

W Enc(PK,s.))

Iteration t: = PRF(5,,,1) W Enc(PK,s'.)
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With the two key ideas —

Do the costly setup once,
and run the lightweight sum many times
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More details in the paper

e How work

e How is done
e How to achieve

e Efficient instantiation of cryptographic primitives, system-
level optimizations



Evaluation results

* What is the right factor to look at?
* Computation cost was the focus: [BIKM+ 2017] = [BBGLR 2020]
* When computation is made cheap, what matters is the “waiting time”



Evaluation results

* What is the right factor to look at?
* Computation cost was the focus: [BIKM+ 2017] = [BBGLR 2020]
* When computation is made cheap, what matters is the “waiting time”

—
Process messages Waiting to collect messages...

—
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Evaluation results

* Feasibility of training a neural network on CIFAR100
e Simulation using a multi-agent messaging system ABIDES

6 RTTs, with all clients
ABIDES

—— BBGLR
Flamingo

AN

—— Baseline

(9]

3 RTTs, only 1 RTT with all clients ‘;
e ——"" 1 RTT with all clients (O] duaeny
0 50 100 150 200 250 300

#training rounds

[\

elapsed time (hours)
w

O

(malicious version)
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Summary

* This work: A secure aggregation system that handles real-world
federated training tasks

* Many interesting future directions
 Validation of client inputs
» Stronger security, e.g., adaptive adversary

L Thanks
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Malicious security
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Malicious security
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Alice

A cross-check round X

X,
$23

Bob Charlie

Key idea:
Honest decryptors agree on what to decrypt




A fault-tolerant sum with malicious security

~

N S
Waiting... \wmm Process...

S

v+,
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